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Abstract

The growing human population, economic expansion, urbanisation, and rising affluence have

driven global resource consumption to unprecedented levels. Metals and minerals have ex-

perienced particularly rapid growth, and mining activities are projected to intensify due

to higher demand in emerging economies, the global energy transition, and declining ore

grades. While mining increasingly encroaches on vulnerable ecosystems, systematic global

assessments remain scarce. Research often focuses on specific regions or materials. More-

over, metals and minerals supply chains remain opaque, hindering comprehensive analysis.

Key data gaps, including the precise locations of mines and the commodities they extract,

exacerbate this challenge. However, recent advances in spatial data, such as global datasets

on mining areas, present new opportunities to explore the regional and global implications

of mining activities.

Structured around three research articles, this dissertation examines the spatial distribu-

tion of global mining activities, their local and regional impacts, and their linkages to global

consumption. The first paper investigates the global spatial distribution of metal mining

projects between 2000 and 2019. Drawing on data from 2,935 mining sites and intersecting

these with biodiversity, protected areas, and water stress indicators, the analysis reveals

that the surge in global metal mining poses significant threats to vulnerable ecosystems.

For instance, in 2019, 79% of metal ore extraction occurred in five of the six most biodi-

verse biomes, and mining volumes in tropical forests doubled since 2000. Notably, half of

all global metal mining takes place within 20 kilometres of protected areas. These findings

underscore the environmental risks of expanding mining activities, highlighting hotspots in

several world regions.

The second paper centres on Brazil, examining mining’s regional economic and envi-

ronmental impacts, with a particular focus on GDP growth and forest loss. Using spatial

econometric models and data from 5,262 municipalities, the analysis reveals that industrial

mining can generate economic benefits, including spillovers to neighbouring regions, but

these gains are transient and depend on global commodity prices. Meanwhile, informal

mining (“garimpo”) is associated with significant deforestation. The findings challenge the

assumption of a simple trade-off between economic growth and environmental conservation,

revealing a nuanced and context-dependent picture.

The third paper links mining-related deforestation to global consumption patterns, fo-

cusing on the European Union (EU). Using satellite imagery and environmentally extended

input-output modelling techniques, the study reveals that 12% of global mining-related de-

forestation is linked to EU consumption, with 89% of these impacts occurring outside the

EU. The analysis identifies key industrial sectors driving these impacts, offering insights to

inform initiatives such as the EU Corporate Sustainability Due Diligence Directive.

By combining spatial data, econometric analysis, and supply chain modelling, this dis-

sertation advances understanding of mining’s environmental and socioeconomic dimensions.

The findings underscore the need for a global, integrated approach, as local environmental

and social impacts are directly tied to global consumption patterns and inherent inequali-

ties. By bridging sub-national and global perspectives, this dissertation provides a roadmap

for identifying priority areas for further research, promoting ecosystem conservation and

pathways toward responsible resource governance.
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Chapter 1

Introduction

Every year, billions of tonnes of earth are moved by humans for the extraction of metal

ores and other minerals, shaping and profoundly changing entire landscapes and societies.

During the course of this PhD, I had the chance to visit large-scale mining operations in the

Brazilian state of Minas Gerais. I was struck by the size of the operations, and how, almost

aesthetic in appearance, terraced steps were cut into mountainsides, winding through the

hills in different shades of rock and ore. At the same time, I was confronted with the

evidence of human intervention in the natural landscape and the significant effects mining

had on all life in the area, which had transformed from a once lush, green terrain into a

barren, rocky expanse. The environmental and societal consequences of mining are manifold

and interconnected. This thesis focuses on some particular aspects of mining-induced

change, aiming to deepen our understanding of the consequences of the unprecedentedly

high and rapidly growing material consumption in certain parts of the world.

The rising human population, economic expansion, rapid urbanisation, and growing

affluence have driven global resource consumption to unprecedented levels, pushing the

world economy toward – and in some cases beyond – planetary boundaries (Steffen et al.

2015; Wiedmann et al. 2020; Watari et al. 2021; Rockström et al. 2023; UN IRP 2024).

This growth is particularly pronounced for metals and minerals, which are foundational

to built environment, mobility infrastructure, and energy systems (UN IRP 2024). As

depicted in Figure 1.1, the global extraction of metal ores, non-metallic minerals and

mined fossil fuels has doubled since the year 2000, reaching 10.0 bn tonnes, 46.4 bn

tonnes, and 8.9 bn tonnes, respectively, by 2020. This corresponds to astounding 2,071

tonnes of raw material being mined every second in that year. Despite this historically

high level of extraction, there are compelling reasons to expect continued acceleration

in mining activities. First, the demand for housing, transport and energy infrastruc-

ture in emerging economies, especially those experiencing rapid population growth and

urbanisation, remains significant (UN IRP 2024). Second, the increasing adoption of

renewable energy technologies is set to considerably boost the demand for critical minerals,

such as lithium, cobalt, nickel and rare earth elements, which are essential for wind

turbines, solar panels, and electric vehicles (Watari et al. 2019; Watari et al. 2020). Even

materials like iron, aluminium, copper, and non-metallic construction materials, which are

already extracted in large volumes, will continue to be required in substantial quantities

11



12 CHAPTER 1. INTRODUCTION

Figure 1.1: Global extraction of mined materials, 1990-2020: metallic minerals (A), non-metallic minerals
(B) and mined fossil fuels (C). Data sourced from the UN IRP Material Flows Database, accessed via
Release 057 of the GLORIA global environmentally-extended MRIO database (Lenzen et al. 2017; Lenzen
et al. 2022).

for the development of renewable energy infrastructure (Lèbre et al. 2020; Hache et al.

2020). Lastly, the anticipated rise in global metal ore extraction is linked to declining

ore grades (Mudd 2010; Prior et al. 2012; Calvo et al. 2016) and technological advance-

ments that now facilitate the exploitation of previously inaccessible or lower-grade deposits.

As a result, mining activities are increasingly encroaching upon ecologically sensitive regions.

Despite the global surge in mining, the anticipated rise in demand for various materials,

and the well-documented social and environmental consequences, which are often explored

at the level of individual case studies (Temper et al. 2015), systematic assessments of mining

impacts at a global scale remain limited. Most research has concentrated on specific mining

regions (e.g., Arellano-Yanguas 2011; Sonter et al. 2014; Bebbington et al. 2019; González-

González et al. 2021; Kumi et al. 2023; Ladewig et al. 2024) or particular materials (e.g.,

Asner and Tupayachi 2016; Sovacool 2019; Siqueira-Gay and Sánchez 2021; Chen et al.

2022). Meanwhile, global metal and mineral supply chains continue to suffer from a lack of

transparency and standardised accounting frameworks (Calderon et al. 2020).

A significant challenge to understanding the current state of global mining lies in persis-

tent data gaps. There is limited information available on the exact locations of exploration

and active mine sites, as well as the commodities involved, production volumes, associated

waste, pollution, and resource use such as water and energy consumption (Maus and Werner

2024).

The absence of a reliable global spatial data foundation hampers efforts to assess the full

scope of mining’s environmental and socioeconomic impacts. Existing evaluations are often

fragmented and contested. In particular, the literature on the socioeconomic effects of min-

ing – frequently measured in terms of economic growth – produces inconclusive results, with

varying outcomes depending on the indicators used, mining types, and regional contexts.

While there is broader consensus about the environmental risks of mining, industry narra-

tives commonly highlight that due diligence and environmental and social standards serve

to address and prevent them (e.g., Global Tailings Review 2020; ICMM 2024a). However,

the gravity of these risks is underscored by recurring disasters such as tailings dam failures

(Escobar 2015; Silva Rotta et al. 2020; Torres-Cruz and O’Donovan 2023), the persistent
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threats to indigenous health and livelihoods (Basta et al. 2021; Mataveli et al. 2022), and the

growing global opposition to mining, as evidenced by widespread environmental movements

against mine development (Temper et al. 2015; Toumbourou et al. 2020; Sternberg 2020;

Ivanović et al. 2023).

The systematic assessment of mining impacts is further complicated by several factors.

These include confounding and interacting activities, which obscure the isolation of mining’s

specific effects from other economic and environmental influences, as well as the indirect

and cumulative impacts that unfold across different temporal and spatial scales (Franks

et al. 2013; Sonter et al. 2014). The difficulties in quantifying both direct and indirect

consequences arise not only from the data deficiencies but also from the need for integrative,

cross-disciplinary conceptual frameworks and established methodologies (Lechner et al. 2017;

Wang et al. 2020). Despite these complexities, recent empirical studies have made significant

progress in addressing the cumulative impacts of mining, such as the spread of deforestation

within and beyond mining areas (Sonter et al. 2017; Giljum et al. 2022; Ladewig et al. 2024).

Further progress in this field is expected, with the release of global datasets on land area

covered by mining (Maus et al. 2020; Maus et al. 2022; Tang and Werner 2023) – revealing

that mining activities now span over 100,000 km2 – offering a promising foundation for

global statistical assessments of the cumulative impacts of mining.

Lastly, as mining and its impacts have become globalised through international supply

chains, addressing these issues requires an integration of local contexts with broader, global

perspectives. The integration of developing countries into the global economy as raw material

providers has peripheralised the negative environmental and social effects of international

consumption (Dorninger et al. 2021; Hickel et al. 2022). Today, considerable knowledge gaps

remain regarding the connections between localised mining impacts and the final demand

for products and services elsewhere, which ultimately drives resource extraction and its

consequences. Only recently have researchers begun to address these linkages. For example,

Cabernard and Pfister (2022) studied biodiversity loss associated with mining-related land

use, identifying impact hotspots and related supply chains. These gaps in knowledge –

whether related to missing data, incomplete evidence of impacts, or opaque supply chains

– continue to hinder efforts toward managing resources sustainably and planning for future

raw material use.

1.1 Aim of the thesis

The aim of this thesis is to address the above outlined gaps in the study of mining-induced

changes. Specifically, my research aims to examine the current status and spatial

distribution of global mining activities, advance the understanding of their local

impacts, and trace these effects through global supply chains to the final con-

sumption of goods and services. To achieve this aim, the research is organised around

three main assessment goals, each addressing specific research questions and explored in a

dedicated research article (for an overview, see Figure 1.2):

1. Contextual risks associated with mining expansion (Publication 1)

• What is the global spatial distribution of metal mining projects, and how have

their patterns of expansion changed over time since the year 2000?
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• To what extent does mining interfere with vulnerable ecosystems, including

biodiversity-rich biomes, protected areas, and water-scarce regions?

• What are the hotspots of raw material extraction, and what risks are associated

with them?

2. Local impacts and spillover effects on neighbouring areas (Publication 2)

• Using the Brazilian mining sector as an example, what are the impacts of mining

on regional economic growth and forest cover?

• To what extent do these impacts of mining extend beyond municipal boundaries,

affecting neighbouring areas?

3. Spatial disconnect between where materials are extracted and where the

related products are consumed that embody the environmental and social

impacts of extraction (Publication 3)

• What is the global extent of forest loss directly attributable to mining?

• How much of this forest loss can be linked to EU consumption patterns?

• Which industrial sectors in the EU are most responsible for driving these impacts?
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Spatial disconnect
between impacts and

consumption
Local impacts and
spillover effects
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Figure 1.2: Three key aspects explored in the thesis, methods applied, and publications.
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1.2 Theoretical and methodological background

This thesis has greatly benefited from collaborations with experts in human and economic ge-

ography, industrial ecology, conservation science, and mining and environmental engineering.

The three publications presented share a foundation in interdisciplinary thinking, with eco-

logical economics as their theoretical backbone. Ecological economics is an interdisciplinary

area of research that integrates insights from economics, ecology, and other disciplines, ac-

knowledging that biophysical processes underpin all economic activities. Unlike traditional

economic models that primarily operate in monetary terms, ecological economics employs

biophysical metrics – such as energy use, material flows, and land area – to quantify and as-

sess economic processes. This approach recognises the biophysical limits of ecosystems and

underscores the need for sustainable development to prevent the transgression of planetary

boundaries (see, for example, Daly and Farley 2011; Haberl et al. 2019). By adopting the

lens of ecological economics, this dissertation situates mining and its related issues within

a broader understanding of the field’s key concepts and paradigms. Two concepts, social

metabolism and environmental justice, have been particularly instrumental in guiding the

research.

Social (or socioeconomic) metabolism can serve as a paradigm to study the biophysical

basis of human societies (Pauliuk and Hertwich 2015). It defines the stocks of a social system

(comprised of humans, durable infrastructures and animal livestock) and describes the flows

of energy and materials within and between societies and the exchanges with nature to build

and maintain these stocks (Fischer-Kowalski and Haberl 1998; Fischer-Kowalski and Haberl

2015). Moreover, it highlights the social and environmental impacts of economic activities

and describes how extensive resource use is driving the global economy towards exceeding

planetary boundaries (Martinez-Alier and Walter 2016; Rockström et al. 2009). Mining

plays a pivotal role in this regard, providing the global economy with natural resources

to allow for an “extended metabolism” (Fischer-Kowalski and Haberl 1998, p. 574) that

largely mobilises non-renewable resources, while simultaneously generating significant waste

and pollution throughout extraction and processing.

At the intersection between ecological economics and political ecology, environmental

justice, in turn, conceptualises the link between the growing metabolism of societies –

mostly in the Global North and emerging economies – and the unequal distribution of

environmental benefits and burdens. This imbalance gives rise to “ecological distribution

conflicts”, highlighting the need for equitable and inclusive solutions at both local and

global scales (Martinez-Alier 2004; Martinez-Alier et al. 2016; Scheidel et al. 2018). Given

mining’s potential to cause extensive adverse impacts, it is a significant driver of ecological

distribution conflicts. Therefore, adopting an environmental justice perspective is crucial

for identifying impact hotspots, addressing and mitigating the adverse effects of mining,

and promoting responsible material sourcing solutions. These concepts form essential pillars

for the perspectives presented in this dissertation, aligning with its research objectives and

offering a framework for understanding both the biophysical and societal dimensions of

mining’s impacts.

Integrating different spatial scales is crucial for a more comprehensive understanding of

the dynamics of the recent mining expansion. Bridging global-scale analyses with spatially
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explicit approaches enables this integration. The global perspective recognises that the surge

in mining is a direct result of the growing physical metabolism of the global economy, while

simultaneously revealing pronounced sub-global disparities. Conversely, spatially explicit

analyses are essential for linking extractive practices to specific local contexts and impacts.

The integration of spatial data forms a unifying theme across the three publications of this

dissertation, reflected in the methodological frameworks employed. These methods include a

combination of geographic information systems (GIS) such as spatial intersection and over-

lay analyses, econometric techniques, and multi-region input-output (MRIO) models, each

contributing distinct insights into the spatial dimensions of mining impacts (see Figure 1.2).

Recent research underscores the potential of remote sensing and GIS for analysing the en-

vironmental, social, and economic impacts of mining at local, regional, and global scales

(Werner et al. 2019; Werner et al. 2020; Islam et al. 2020). Notably, during this PhD, sev-

eral global mining datasets became available (Maus et al. 2020; Maus et al. 2022; Tang and

Werner 2023; Jasansky et al. 2023), further enriching spatial analyses. The field is advancing

rapidly, with ongoing improvements in remote sensing now enabling the detection of even

artisanal and small-scale mining activities (Nursamsi et al. 2024a; Nursamsi et al. 2024b). In

this research, I compile several spatial datasets, combining detailed mining registers, spatial

point and polygon data on mining sites, high-resolution satellite images of land cover, socio-

environmental characteristics of municipalities, and statistical data at national, ecosystem,

and watershed levels. The following chapters of this thesis demonstrate how these datasets

are employed to effectively capture certain aspects of the complex geographical dimensions

of mining impacts.

1.3 Summary of paper contributions

The first paper, titled Surge in global metal mining threatens vulnerable ecosys-

tems, addresses the contextual risks posed by the expansion of global mining operations

into ecologically sensitive areas. Here, contextual risks refer to the broader environmental

conditions surrounding mine sites, which play a crucial role in determining the vulnerability

of ecosystems and the extent of mining’s impacts. To understand the local environmental

and social consequences of the global expansion of mining, it is essential to study risks at a

spatially explicit level. Existing global assessments have typically focused on cross-sectional

data and single environmental aspects, such as biodiversity loss (Murgúıa et al. 2016; Sonter

et al. 2018) and water scarcity (Northey et al. 2017). Building on these earlier studies,

this paper presents the first comprehensive, fine-grained assessment of global metal mining

activities, covering nine major metal commodities over a 20-year period.

While assuming that mining exerts pressure on all ecosystems, the paper identifies specific

areal characteristics that signal particular vulnerability. We conduct a descriptive spatial

analysis (it is important to note that this analysis does not aim to detect causal impact

relationships), using data on the spatial and temporal distribution of mining activities for

bauxite, copper, gold, iron, lead, manganese, nickel, silver, and zinc from 2,935 active mining

sites worldwide between 2000 and 2019. The analysis relies on the SNL metals and mining

database (SNL 2020) – despite known limitations and biases (Maus and Werner 2024), as it

was the most comprehensive dataset available at the time – and combines this information

at the individual mine-level with country- and commodity-specific conversion factors from
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UNEP’s Global Material Flow Database (UN IRP 2017a) to generate standardised accounts

of extracted crude ore. Robustness checks are carried out to ensure the dataset’s reliability

and to confirm that it covers the most significant mining operations globally for the nine

metals considered. The data is then intersected with three spatial layers serving as proxy

indicators of ecosystem vulnerability: terrestrial biomes, protected areas, and water stress.

The analysis reveals that the rapid expansion of mining activities is increasingly affecting

vulnerable ecosystems. For instance, in 2019, 79% of global metal ore extraction occurred

in five of the six most species-rich biomes, and mining volumes in tropical moist forests had

doubled since 2000. Additionally, we find that half of global metal ore extraction took place

within 20 km of protected areas, and regional hotspots of mining growth are identified in

Latin America, Central Africa, India, and Western Australia.

Through this descriptive spatial analysis, the paper offers a comprehensive overview of

the state of global mining, providing valuable insights into the locations and ore extraction

rates of active mine sites and their interaction with key environmental indicators. This

work sets the stage for more detailed local studies and future research on the cumulative

impacts of mining, and offers recommendations for how mining companies and policymakers

can contribute to impact mitigation.

The second paper of this dissertation, titled Transient economic benefit and per-

sistent forest loss: regional impacts of mining in Brazil, takes a closer look at one

of the hotspots identified in the first publication. The aim of this study is to assess the

regional economic and environmental impacts of mining, with a particular focus on GDP

growth and forest cover loss. Unlike the first paper, which emphasises contextual risks, this

paper focuses on delivering empirical evidence of the actual local and regional consequences

of mining activities. To achieve this, a flexible econometric model is proposed, incorporating

spillover effects between municipalities. This approach is demonstrated through a case study

of Brazil.

Brazil is not only a major global supplier of metal ores but also plays a crucial role in

tropical forest conservation. Among several adverse mining impacts (e.g., Silva Rotta et al.

2020; Ferrante and Fearnside 2022), mining-induced deforestation stands out as a significant

concern (Sonter et al. 2017). However, while there is widespread recognition of the environ-

mental and social risks linked to mining, there remains debate over the potential economic

benefits it could bring to local communities (de Castro Gentil et al. 2019; Fernandes and

Araujo 2016). In this paper, we critically examine the notion of a trade-off between economic

gains and environmental damage, challenging the assumption that mining consistently leads

to sustained regional economic development.

By focusing on observations at the municipality level, the study offers a more localised

analysis compared to broader national-level assessments of mining’s macroeconomic impacts.

Moreover, we distinguish between industrial mining and informal mining (“garimpo”), high-

lighting how these two types of operations, which are provided for in Brazilian legislation,

differ in their impacts. The econometric models employed utilise spatial panel data. We use

land cover data based on satellite imagery from the MapBiomas project (MapBiomas 2023),

which features mining observations, complemented by various socioeconomic and biophysical

variables. In total, the compiled dataset covers yearly observations from 5,262 municipal-

ities over the period from 2005 to 2020. The econometric approach employed allows for
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stronger causal inferences, as it accounts for a range of regional confounding factors as well

as national macroeconomic trends to isolate the specific effects of mining. Additionally,

the study incorporates a spatial weighting scheme to recognise that nearby observations are

interrelated.

This approach is particularly useful for investigating cumulative impacts that stem from

the transmission of impacts across space, revealing how both economic and environmental

effects of mining extend beyond the municipalities where mining occurs. The assumption

that mining’s impacts transcend municipal borders is well-founded: economically, mining

operations can create local employment and multiplier effects that benefit surrounding areas,

while environmentally, impacts such as deforestation can spread for instance through the

development of transport and energy infrastructure related to mining, which in turn makes

remote areas more accessible for other human activities. This spatially sensitive analysis

provides a fresh perspective on the broader regional consequences of mining, emphasising

how both benefits and harms extend beyond the boundaries of the mining municipalities

themselves.

Our findings reveal that the impacts of different mining types vary and are not uniform

over time, reflecting the complexity of assessing cumulative mining effects. Industrial

mining operations may generate short-term economic benefits, including positive spillovers

to neighbouring areas. However, these economic gains are temporary and influenced by

global commodity price fluctuations. The deforestation caused by mining is closely tied

to the type of mining activities and the dual legal framework governing them in Brazil.

Industrial mining is associated with lower rates of forest loss in neighbouring municipalities,

whereas “garimpo” mining is linked to substantial deforestation. Striking a balance between

forest conservation and economic development is crucial for achieving sustainability in

extractive economies and their supply chains. However, our results suggest that the

relationship between these two spheres is more intricate than a straightforward trade-off.

While enhancing environmental responsibility is essential, particularly in the poorly

regulated informal sector, mining does not guarantee sustained economic development. The

study contributes valuable quantitative evidence to inform political discourse, relevant not

only for Brazil but also for resource-rich economies worldwide. However, broader global

assessments may face significant limitations due to data availability challenges.

In the third article of this dissertation, titled EU consumption’s hidden link to

global deforestation caused by mining, we bridge the gap between local environmental

impacts at mine sites and the consumption of goods and services in distant regions, particu-

larly focusing on final demand in the European Union (EU). The study traces how environ-

mental degradation, specifically deforestation driven by mining, is embodied in international

supply chains and final demand, mainly through private and government consumption, and

capital formation. Knowing how local impacts are tied to global consumption is particularly

important given the rise of new supply chain laws, such as the recently adopted EU Cor-

porate Sustainability Due Diligence Directive (CSDDD), which requires large companies to

monitor and ensure sustainability throughout their supply chains (European Commission

2022). The directive is especially relevant to the supply chains of metals and minerals, as

many world regions, including the EU, heavily depend on imports of these resources (Euro-
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pean Commission 2020b). However, as previously noted, traceability of local mining impacts

remains a challenge in a globalised economy.

This paper addresses key knowledge gaps, focusing specifically on the environmental im-

pact of forest loss caused by mining. Mining has increasingly been recognised as a significant

local driver of deforestation, along with associated issues such as biodiversity loss and social

conflicts. These impacts extend not only within the immediate vicinity of mining sites but

also affect surrounding regions, amplifying the environmental and social pressures on local

ecosystems and communities (Pendrill et al. 2022; Sonter et al. 2017; Giljum et al. 2022;

Ladewig et al. 2024). With satellite imagery offering clear evidence of forest cover changes,

forest loss within mining areas provides a valuable case study for quantitatively assessing

the environmental impacts embedded in the EU’s final demand for goods and services. We

utilise high-resolution satellite imagery to track forest cover changes (Hansen et al. 2013)

within delineated mining areas (Maus et al. 2022). This allows us to compile annual records

of forest loss due to mining across extraction sites globally between 2001 and 2019. Ob-

tained data are then incorporated into a global trade model, which facilitates the linkage

of deforestation at mining sites to final demand patterns in the EU. The combination of

satellite-based deforestation mapping and economic modelling therefore enables a detailed

assessment of how forest loss at mine sites is tied to consumption in distant markets.

Our findings reveal that 12% of the global forest loss caused by mining activities can

be attributed to final demand in the EU, with the vast majority of these impacts occurring

outside the EU’s borders. This highlights the disproportionate burden placed on non-EU

countries as a result of EU consumption patterns. We also observe considerable variation in

the intensity of mining-related deforestation across different commodities, mining regions,

and European industry sectors, which enables us to propose targeted strategies for policy-

makers and industries to mitigate the environmental impacts of resource consumption. These

strategies not only outline pathways for the EU to adopt more environmentally responsible

sourcing practices, but also address the implications for material suppliers. However, we

also recognise limitations such as, while our analysis focuses on forest loss, mitigating defor-

estation could result in trade-offs with other environmental or social impacts. Moreover, our

findings underscore the need for international cooperation to achieve global sustainability

targets, as final demand in other major economies such as the USA, China, and India also

contributes significantly to mining-related impacts.



20 CHAPTER 1. INTRODUCTION



Chapter 2

Surge in global metal mining

threatens vulnerable ecosystems

Abstract: Mining activities induce profound changes to societies and the environment

they inhabit. With global extraction of metal ores doubling over the past two decades,

pressures related to mining have dramatically increased. In this paper, we explore

where growing global metal extraction has particularly taken effect. Using fine-grain

data, we investigate the spatial and temporal distribution of mining of nine metal ores

(bauxite, copper, gold, iron, lead, manganese, nickel, silver and zinc) across approxi-

mately 3,000 sites of extraction worldwide between 2000 and 2019. To approach the

related environmental implications, we intersect data of global mining with terrestrial

biome categorisations, protected areas, and a water pressure index on the watershed-

level. We find that 79% of global metal ore extraction in 2019 originated from five of

the six most species-rich biomes, with mining volumes doubling since 2000 in tropical

moist forest ecosystems. We also find that half of global metal ore extraction took

place at 20 km or less from protected territories. Further, 90% of all considered ex-

traction sites correspond to below-average relative water availability, with particularly

copper and gold mining occurring at high rates in areas with significant water scarcity.

Our study has far-reaching implications for future global and local policy and resource

management responses to mitigate the negative effects of the expected expansion of

metal mining.

2.1 Introduction

Mining plays an ambiguous role for society. It has become indispensable to the model

of economic growth currently pursued in industrialised, mineral-based societies. But it is

also among the most environmentally and socially hazardous human activities. Its harm-

ful consequences for the environment and its catalysing association with social conflicts are

well-documented (Scheidel et al. 2020; Conde 2017; Bebbington et al. 2008; Bridge 2004).

This chapter was co-authored with Stefan Giljum, Anke Schaffartzik, Victor Maus, and Michael Tost.
The research was supported by the European Commission under the ERC Consolidator Grant FINEPRINT
(Grant Number 725525). A.S. also acknowledges financial support from the Austrian Science Fund (FWF)
through Hertha Firnberg project T949.
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Unprecedented and rapidly growing extraction of metals and minerals during the past two

decades (Schandl et al. 2017; Schaffartzik et al. 2014b) and the projected increase in ma-

terial demand (UN IRP 2019; OECD 2019) are alarming signs that associated impacts will

intensify in the future.

The surge in global metal mining signifies an increased production of metal commodities

through establishing new mining projects, physical expansion of existing sites and inten-

sifying and optimising the extraction process. It is part of an overarching trajectory of

globally increasing resource use, referred to as the Great Acceleration (Steffen et al. 2015),

which is pushing the global economy’s metabolism up against Planetary Boundaries (Rock-

ström et al. 2009). Differences in growth dynamics of the extractive sector are apparent,

with countries and regions unequally contributing to this global trajectory (Dorninger et al.

2021; Schaffartzik et al. 2016). Local mining expansion and intensified production, as well

as related impacts in the immediate surroundings of the sites of extraction, are closely cou-

pled to overarching global change, calling for a “multilevel perspective” (Gibson et al. 2000)

to understand the environmental and social implications of mining’s worldwide growth. By

studying the local expressions of the global surge in mining in a spatially explicit manner, we

seek to advance the empirical understanding and conceptual framing across levels of scale.

This paper presents and contextualises a detailed assessment of how metal mining vol-

umes are distributed across almost 3,000 mining projects worldwide, covering nine metal

ores (bauxite, copper, gold, iron, lead, manganese, nickel, silver and zinc) in the period

2000-2019. We explore whether the development of global metal mining has particularly

affected vulnerable ecosystems around the world and identify hotspots of raw material ex-

traction and ecosystem impact. We assume extraction gains to be associated with additional

pressures, because production volumes are likely related to the areal extent of mining sites

(Werner et al. 2020) and intensified use of heavy machinery. Based on our large-scale em-

pirical assessment, we discuss the environmental implications of the expected increase in

mining activities. We pave the way for in-depth local studies and future assessments of the

cumulative magnitude and transmission of impacts, and summarise how mining companies

and policies can contribute to impact mitigation.

In order to gauge the potential impact of mining on ecosystems, we focus on ecosystem

vulnerability. Vulnerability has been debated in sustainability science under definitions such

as “the degree to which a system, subsystem, or system component is likely to experience

harm due to exposure to a hazard, either a perturbation or a stress/stressor” (Turner et al.

2003, p. 8074). In their extensive review, Weißhuhn et al. (2018) suggest the term ecosystem

vulnerability as being preferable to ecological, environmental, or other notions of vulnera-

bility and propose a framework with “exposure”, “sensitivity”, and “adaptive capacity”

defining the degree of vulnerability. They stress that such a perspective on vulnerability is

biocentric (Birkmann and Wisner 2006) rather than anthropocentric, because it understands

environmental systems as being affected by natural and anthropogenic drivers, instead of

being sources of hazards that influence human systems. In employing this concept in the

context of intensified mining, we investigate whether the acknowledgement of ecosystem

vulnerability deters extraction.

For the purposes of this paper, we assume that mining activities exert pressure on all

ecosystems, but that certain areal characteristics can be identified which are considered

to signal particular vulnerability. Our study uses three spatial layers as proxy indicators
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for ecosystem vulnerability: terrestrial biome categorisations, protected areas, and water

scarcity. Subsequently, we connect these layers with spatio-temporal patterns of extraction

at the mine level. In doing so, we combine approaches from previous work dealing with

single environmental layers and their respective links to mining. Murgúıa et al. (2016) and

Sonter et al. (2018) demonstrate how mining relates to biodiversity loss. Durán et al. (2013)

find that metal mining activities undermine the role of protected areas as a key policy tool

for conservation. Regarding an intersection of mining sites with water scarcity indicators,

Northey et al. (2017) find that the exposure of areas to water risk is especially high in the

case of copper mining. Recently, studies have also investigated the areal extent of mines,

either based on estimations, such as Tost et al. (2020), or by the use of satellite imagery

(Werner et al. 2020; Maus et al. 2020). These studies focus on cross-sectional analyses of a

specific selection of metals, such as four key metals in Durán et al. (2013) or of the locations

of base metal resources in Northey et al. (2017). Our study builds upon these approaches

to provide the first fine-grained assessment of metal mining regions on a worldwide scale,

covering nine major metal commodities across a 20-year period.

We find that the rapidly expanding mining sector exerts increasing pressures on ecosys-

tems recognised as vulnerable. Our results show that there is a substantially skewed dis-

tribution in terms of extraction volumes, i.e. extraction per mine is not evenly distributed

around a certain value, but a minority of mines reports much higher figures than the mass.

Further, regional hotspots of mining growth have emerged during the observed time period,

in particular in Latin America, Central Africa, India, and Western Australia. Due to the

multilevel approach, our findings have substantial implications for future global and local

policy responses, supporting calls for a stricter set of rules for accessing primary resources.

2.2 Material and methods

2.2.1 Mining data and environmental spatial layers

We utilised mine-specific production data from the SNL Metals and Mining Database1 (SNL

2020). Projects were considered for which SNL reported any mining of bauxite, copper,

gold, iron, lead, manganese, nickel, silver or zinc within the time period 2000-2019, in total

summing up to 2,935 individual mines. Focusing on the 21st century obviously presents a

limitation, but it allows to cover the entire period of what might be considered the “second

great acceleration” (Görg et al. 2020) of resource use at the global level.

Except for bauxite, iron and manganese, which are listed as ores (gross weight), metal

production is reported as metal content (net weight). In order to construct a homogeneous

measure of extracted crude ore that is used as an input from the natural environment to

the economic system, we applied country- and commodity-specific conversion factors from

UNEP’s Global Material Flow Database (UN IRP 2017a) to all net weight commodities.

This measure, referred to as “extraction” or “metal ore” in the following, corresponds to

the actual amount of extracted material exerting pressure on the environment instead of a

1This database, offered by Standard and Poor’s (S&P) Market Intelligence, provides extensive operative
and financial information on thousands of mining projects based on company reports.



24 CHAPTER 2. SURGE IN GLOBAL METAL MINING

final product after several processing steps.2 Figure 2.1 provides a summary of the data

and illustrates variations in extraction volumes and increasing extraction rates for the nine

metal ores. For more detail, see Appendix A.1.
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Figure 2.1: Global extraction of bauxite, copper, gold, iron, lead, manganese, nickel, silver and zinc ores
based on SNL (2020) and UN IRP (2017) conversion factors. Please note the differences in scale on the
y-axes. See Table A2 in the Appendix for underlying data.

We considered this set of base and precious metals in our study because of their ex-

tensive industrial use. Next to construction materials, coal and crude oil, iron, bauxite

and copper ore feature the highest extracted mass among mineral resources (Murgúıa et al.

2016). Schaffartzik et al. (2016) name iron and aluminium (we consider bauxite) being

quantitatively most important. Together with other metals in smaller amounts including

lead, manganese and copper they form the “skeleton of industrial development” (ibid.: 103).

Similar selections are made, for example, by Durán et al. (2013) and Northey et al. (2017),

additionally including zinc and nickel. We furthermore consider the precious metals gold

and silver, because of the high prevalence of such mining facilities (Murgúıa et al. 2016) and

persistent exploration expenditure due to high market value (Ali et al. 2017). Other metals

with growing demand, such as cobalt or rare earth metals, were not covered in our analysis

as they were poorly reported in the database at hand.

We are aware that assuming national averages as ore grades introduces uncertainty in the

data. As a validation of coverage and quality, we compared annual metal extraction accord-

2Waste rock is excluded because this information is not yet available for global analyses, but it would be
extremely valuable to researchers and policy makers. We expect that an inclusion of over- and interburden
might allow for a better approximation of the potential disruption to the local system.
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ing to our dataset (based on reports of production from individual mines) with official UNEP

IRP statistics (based on national accounts). In the Appendix (Figure A1), we demonstrate

that our extraction data provides reliable coverage, mimicking extraction trends reported by

other sources. Largest gaps between our modified SNL aggregates and UNEP IRP figures

occur because of country-level irregularities, most notably regarding China. For the case of

iron, approximately 1,500 Megatonnes (Mt) of Chinese iron ore extraction in 2017 is missing

in the SNL data compared to UNEP IRP. Moreover, we illustrate that assumptions about

ore grades influence extraction estimates for individual mines (Table A3, Figures A2 and

A3). For comparison, we considered copper mines of four countries and mine-specific ore

grades available from Mudd and Jowitt (2018). The exercise suggests that assumed national

averages are conservative, as they rather lead to under-estimating extraction, and that es-

timates from both approaches correlate well. However, we must also note that we found

substantial deviations for some extraction countries, such as Peru, where estimates of the

considered sample sum up to 350 Mt when utilising individual ore grades while they only

amount to 90 Mt using the UNEP average grade.

Difficulties to fully consider artisanal and informal mining on a global scale impose a limi-

tation, again suggesting that the data we used represent under- rather than over-estimations

of material extraction. The environmental pressures related to small-scale mining will be

at least as strong and possibly farther-reaching compared to larger mines considered in our

study (Asner et al. 2013; Caballero Espejo et al. 2018).

Exposure to environmental complexity was assessed by spatially intersecting extraction

data with terrestrial biome categorisations (accessed from Resolve 2017 based on Dinerstein

et al. 2017). Biomes are defined as communities of plants and animals occurring together

under certain climate conditions (Resolve 2017). They systematically subsume the richness

of an area’s ecosystem in terms of variety in and number of species. As another proxy

for anthropocentrically recognised rich, special, or endangered biodiversity, we considered

a spatial layer on protected areas (UNEP-WCMC and IUCN 2020). We calculated the

distance to the closest protected area for each mine. Third, we considered the Available

Water Remaining (AWARE) index (WULCA 2019) as an indicator for water risk exposure

(annual average at watershed level). It represents water availability after the demand of

ecosystems and humans is met. While a variety of spatial water indices exists with each

providing a somewhat different perspective on the interactions between water resources and

mining (Northey et al. 2017), we chose this index for two main reasons. First, it provides

spatial coverage for the entire set of considered mines except for Nalunaq mine in Greenland.

Second, the AWARE index was designed to reflect potential water deprivation by other users

of water – a suitable indicator given that mines utilise water in a number of processes. The

index further features a convenient interpretation: It is limited between 0.1 and 100, where

1 corresponds to the world average and 10, for instance, represents water availability that

is ten times less than the world average.

2.2.2 Approaches to analysing global distribution and extraction

trends

We implemented three analytical steps in order to evaluate the surge in global metal mining

between the years 2000 and 2019. We first assessed annual spatial distribution and con-
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centration of global metal ore extraction. Second, we performed spatial overlay analyses

to determine the extent to which increased production particularly occurs in recognisably

sensitive areas with regard to species richness, need of protection, and water availability. In

doing so, we also addressed differences in extraction patterns across the nine commodities.

Third, to detect the most critical developments and based on our findings from the layer

analyses, we performed an assessment of hotspots among the three environmental layers.

An illustration of our workflow is provided in Figure 2.2.

Figure 2.2: Workflow of this study, highlighting utilised spatial data, analytical steps 1-3, and respective
operational level and scale of each stage. Dashed red lines represent links across layers, and solid red lines
indicate syntheses of information.

To facilitate visual interpretation, we aggregated annual metal mining into 1× 1 degree

cells (corresponding to approximately 110 km at the equator) by summing up the total ore

extraction across all nine metals. This simplification serves as an initial, high-level picture

of the spatial distribution of global metal ore extraction. It cannot point out potential

environmental impacts that occur in direct and up to only a few km proximity to mines,

nor does it reflect the actual number and specifics of mining projects such as type and scale

within each grid cell. However, recent studies show that assuming biodiversity (Sonter et al.

2020) and deforestation (Sonter et al. 2017) effects within at least a 50 km wide radius around

mines is reasonable, and hence the map provides a first estimate of potentially negatively

affected areas and indicates the corresponding extraction volumes (for a more conservative

grid of 0.5 and 0.1 degrees see Figures A5 and A6 in the Appendix). In order to intersect

mining activities with regional environmental structure, we overlaid all mine sites with the

three different spatial layers mentioned above and aggregated annual extraction volumes

into the respective layer categories.

Trends in the extraction volumes were estimated employing a geographically weighted

regression (GWR) model, modelling log-transformed extraction at the mine level as a func-

tion of time (see Appendix A.2 and Brunsdon et al. (1996) for more detail regarding GWR).

GWR captures the spatial structure within the data and yields spatially varying parameter

estimates. In contrast to estimating a trend for each single spatial observation, GWR incor-

porates the information of surrounding mines weighted by geographical distance and hence

reflects potential compound effects of mining on the environment in areas where multiple

sites are close to each other. Extractive industries can have different relationships across
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regions such as networks of mines expanding in emerging mining regions, regional boosts in

investment and new technologies or multiple mines being closed in certain areas as a con-

sequence of decreased (economic) feasibility of mining. While the GWR approach makes it

possible to depict sub-national densification clusters by reflecting heterogeneity within coun-

tries, it comes at the cost that it smooths over individual outlier cases within the clusters

(using spatial weights assigned to proximate mining projects) that might also have critical

impacts on the environment.

2.3 Results

The main findings of our study include global spatially explicit extraction volumes, the dis-

tribution of mining sites, and their intersection with terrestrial biomes, distance to protected

areas and water risk classifications over the period 2000-2019. We also identify particular

hotspots of mining intensification and expansion.

2.3.1 Spatial distribution of metal mining

Relative to the total earth surface, only a small area is used for mining. In a recent paper,

Maus et al. (2020) estimated the global mining area at around 57,300 km2, approximately

the size of Croatia or Togo. In Figure 2.3, we show all mining activities projected into 1× 1

degree cells.3 Among the mining cells, we observe strong heterogeneity regarding extraction

volumes and a highly skewed distribution, i.e. a small fraction of mining areas reporting very

large extraction volumes and vice versa. For 2019, about 95% of all mining areas indicate

less than 25 Mt and half of the observations less than 1.3 Mt of extraction per cell, while a

small fraction of cells yields extraction of up to 279 Mt.

Mining activities are spatially concentrated in Western Australia, Southern Africa, and

along the Andes and into the Central and North American ranges of the American Cordillera.

Furthermore, we find significant activities in Brazil, West Africa, India, China and Southeast

and Central Asia. For China, we observe a considerable number of mining sites, but we also

find that almost 80% of the observed cells show extraction volumes not larger than 2 Mt.

Maus et al. (2020) also highlight that mining in China is characterised by many – on average

smaller – mining areas, while Australia reaches a comparable total areal extent with fewer,

but larger mining sites. Certain clusters appear in strong concentrations within countries,

such as in Brazil or along the Zambian and Congolese border. This fact is vital to consider

for the discourse about mining and its impacts, as well as for global material flow analyses.

Sizeable copper flows, for example, originate from the DR Congo, with extraction occurring

only in a few mines in the very south of the country. Likewise, in Brazil, 90% of all iron ore

extracted in 2019 can be attributed to only ten mining sites within the states of Pará and

Minas Gerais.

The unequal distribution of extraction intensity across all mining regions shows a similar

pattern across commodities, but on different scales regarding volumes, the number of mining

regions and the degree of concentration. For more detail, see Figure A7 in the Appendix,

32000, 2010, 2015 and 2019 maps separate by metal are available in Appendix A.3. For an evaluation of
how the counts of mining cells have changed per commodity, see Figure A4.
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2019 metal ore extraction (Mt)

0.2 0.3 0.7 1.3 2.3 4.4 10.7 279.2

Figure 2.3: Global 2019 metal ore extraction (in Mt) grouped by 8 quantiles on a 1 degree resolution (i.e.
about 110 km × 110 km at the equator) using a Robinson map projection. Based on SNL (2020) and UN
IRP (2017) conversion factors.

where we resampled extraction data to 0.25 degree resolution and ordered the cells by their

extraction volumes for all nine metals.

In Figures 2.4A-C, we map the three environmental layers and indicate how mining sites

are distributed across them. With regard to terrestrial biome classifications, most mines are

located in temperate broadleaf & mixed forests (627 observations), tropical & subtropical

moist broadleaf forests (594) and deserts & xeric shrublands (448), while only 39 sites lie

in the tundra biome. The histogram in 2.4B illustrates that 92% of all mines are located

within a distance of 250 km to a protected area. More than a third of the 2,935 mines are in

a range of 20 km, and 4.2% of all mining sites (i.e. 123 mines) are located within designated

protected territories. Lastly, we detect that, on the one hand, only 280 mines, i.e. 9.5% of

our full sample, are located in watersheds of above-average water availability. On the other

hand, 13% of mines lie within areas of an index score higher than 60 (corresponds to 4.1 on

the figure’s logarithmic scale), i.e. within high water risk regions such as various Central and

Eastern Asian deserts, the Chihuahuan Desert, and Southeast Australian temperate forests

and savannas.
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Figure 2.4: Mining sites considered in this study (based on SNL 2020) and their distribution across terrestrial
biomes (based on Resolve 2017, A), protected areas (based on UNEP-WCMC and IUCN 2020, B), and
AWARE water stress index classifications (log-transformed, based on WULCA 2019, C) using Robinson
map projections.
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2.3.2 Surge in global metal mining in environmentally vulnerable

regions

Having explored the uneven distribution of mining activities across the globe, we evaluated

the intensification and expansion of mining against the backdrop of perceivable regional

vulnerability to the harmful consequences of extractive practices. Figure 2.5 illustrates

how extraction volumes have developed in relation to the regional characteristics of the

area in which they occur. It is important to note that “regional” in this sense refers to a

wider understanding than specific localised features in the immediate surroundings of mines.

Heterogeneity in space that occurs at more granular levels is not assessed here. Not only

extraction volumes (see Section 2.3.1) but also biomes exhibit notable variation in size: the

Mediterranean forests, woodlands & scrub biome extends over only 1.5% of global land

surface while boreal forests/taiga are the largest biome covering 12%. We hence evaluated

both absolute numbers (left panels in Figure 2.5; in Mt) and relative trends (right panels;

using 2000 as the base year) for the three spatial layers.

Figure 2.5A shows that, in absolute values, deserts and xeric shrublands (DesXS) were

the most exploited terrestrial biome during the past twenty years. In 2019, 2,241 Mt of

metal ores were mined there, followed by tropical and subtropical moist broadleaf forests

(TropSubMBF, 911 Mt) and temperate broadleaf and mixed forests (TempBMF, 614 Mt).

Upon ranking all biomes according to their richness in species4, we find that five of the six

most complex terrestrial biomes jointly were the origin of 79% of total metal ore extracted

in 2019. Next to the three biomes mentioned above, these five include montane grasslands

and shrublands (MontGS) and tropical and subtropical grasslands, savannas and shrublands

(TropSubGSS). While this pattern has not altered over the past twenty years and the ranking

across biomes remained mostly unchanged since 2000, we see that extraction has changed

in relative terms within biomes. The right panel of Figure 2.5A shows that mining has

intensified over time in all biomes except temperate conifer forests (TempCF) and MontGS.

In TropSubMBF, the biome richest in species, metal ore extraction has increased by a factor

of 2.1, due to, among others, the expansion of mining activities in the Central Range Papuan

montane rain forests (New Guinea), the North Western Ghats moist deciduous forests and

the Malabar Coast moist forests (India), and the Borneo lowland rain forests (Indonesia).

Nature reserves are a political instrument for protecting specific territories from anthro-

pogenic environmental destruction. However, it is likely that the designation of conservation

areas also accounts for current and potential future minerals extraction in some countries.

As a second spatial layer, we examined the proximity of mining activities to protected areas.

Figure 2.5B depicts global extraction up to 50 km from such areas. In 2019, 50% of all global

metal ore extraction took place within a 20 km boundary around protected territories, and

480 Mt (8%) were mined within officially protected zones. Similar to mining within biomes,

we find that this is a pattern that has not changed fundamentally since 2000. But it has

intensified. While the high concentration of metal ore extraction within a buffer of 20 km

around protected areas appears to be a stable finding for the period considered in our study,

it is the mining within protected areas that surged. Over the twenty-year period, mining

in protected areas has risen from 225 Mt to 480 Mt, a 113% increase. Further, the figure

4We based the ranking on the Millennium Ecosystem Assessment (2005), where species richness (the
number of species in a given area) is referred to as the most common measure of biodiversity.
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Figure 2.5: Total (left) and relative (right) extraction volumes within biome classifications (A), 5 km
proximity buffers to protected areas (B), and available water remaining (AWARE) decile intervals (C);
2000-2019; based on SNL (2020) and UN IRP (2017) conversion factors.

suggests that there was a significant surge in mining in the 10-15 km range from protected

areas.

The large increase of mining activities in protected areas is partly explained by new

sites. Over the full period analysed in this study, 123 mines were detected within protected

zones. The number of mining sites in such zones increased from 55 in 2000 to a peak of

96 in 2012 and since then oscillated between 80 and 90. One prominent example of a new

project within a protected area is the expansion of mining in the Carajás National Forest in

the state of Pará, Brazil, located in the Xingu-Tocantins-Araguaia moist forests ecosystem.

In 2016, the Brazilian multinational corporation Vale opened the Serra Sul (also known

as S11D) mine as the largest project in the company’s history (Vale 2016). In 2019, 73

Mt of iron ore were mined at this site. Other mines within the area, which was declared

national forest of the state Pará in 1998, have already existed longer, yet increased their

extraction significantly at the beginning of the 21st century. For example, the N5 iron ore
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mine increased its production from 11 Mt in 2001 to 54 Mt in 2013 and the N4W mine from

15 Mt in 2001 to almost 40 Mt in 2012.

Some mines are not located within, but directly border on protected areas. The Indone-

sian Grasberg copper and gold mine, one of the world’s largest mining projects, is such an

example. Its concession area immediately neighbours Lorentz National Park, designated

World Heritage Site in 1999. The mine is related to the pollution of rivers and lakes in that

area due to riverine tailings disposal (Martinez-Alier 2001). Lorentz National Park is the

largest national park in South-East Asia. It has an outstanding biodiversity and comprises

a number of fragile ecosystems, such as subalpine areas, tropical rainforest, and mangroves

(UNESCO 2020).

Supporting the choice of terrestrial biomes as one category indicating ecologically com-

plex and vulnerable regions, nine out of the ten largest extraction projects that lie within

protected areas (identified by accumulated mined volumes) are located in TropSubMBF or

TropSubGSS. Only the Grasberg mine in Indonesia belongs to the MontGS biome. Eight of

these nine mines in tropical regions are located in Brazil (seven of which are iron ore mines

and one is a bauxite mine).

The third layer intersection was conducted with regard to water stress, using the nor-

malised AWARE index with a score of 1 representing the available water remaining in a

watershed as corresponding to world average and scores above 1 corresponding to less water

availability relative to the global average. Figure 2.5C illustrates annual extraction in Mt at

the AWARE decile level. While in 2019, 1,080 Mt (18 %) of metal ore were extracted in the

decile with high relative water availability, i.e. watersheds with an AWARE score smaller

or equal to 1, 90% of all considered extraction sites are located within watersheds that

have below-average relative water availability. Considering that the consumption-weighted

average AWARE index is 43, meaning that the majority of economic activity and water

consumption affects regions where the index exceeds 1, we find that 1,034 Mt (17 %) were

extracted in watersheds with an AWARE score higher than this weighted average. In the

most critical category, the 64 to 97 decile, 472 Mt were mined in 2019, of which approx-

imately one third was mined in the Chihuahuan desert in Mexico and the United States.

Largest extraction volumes and highest growth rates are measured for watersheds with

AWARE scores between 17 and 28. These include major mining hubs such as the Escondida

copper mine in the Chilean Atacama desert, iron ore production in the Australian Pilbara

shrublands, and copper mining in the Kazakh semi-desert.

2.3.3 Differences across metal types

We next highlight differences across metals in Figure 2.6. From top to bottom, this figure

depicts the environmental layers and from left to right, it represents the nine metals con-

sidered in this study. We illustrate how the composition of extraction volumes per metal

has developed between 2000 and 2019. Regarding biomes (2.6A), the five categories with

highest species richness – TropSubMBF, TropSubGSS, DesXS, tropical and subtropical dry

broadleaf forests (TropSubDBF) and MontGS – are separately shown while all other biome

categories are aggregated as “other”. Charts in 2.6B show distance to protected areas in

incremental steps of 5 km each up to 20 km proximity and remaining sites grouped into a

residual category. In 2.6C, AWARE index categorisations are depicted. We stress the five
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most critical water scarcity deciles and subsume the other half of all observations under

AWARE scores between 0 and 10.7. Note that the levels of extraction volumes differ widely,

with iron, copper and gold ore being mined in the largest amounts.
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Figure 2.6: Extraction volumes by commodity and selected biomes (A), distance to protected area (B),
and AWARE index (C); 2000-2019; based on SNL (2020) and UN IRP (2017) conversion factors.

Highest increases in global extraction are reported for iron and manganese ores. In

2019, more than 75% of iron ore were mined either in TropSubMBF, TropSubGSS or DesXS

biomes. This share has grown since 2000, when 60% were mined in these three categories,

mostly (but not only) because of extraction gains in DesXS. Manganese, which is predom-

inantly used as an input for steel production, reaches an even higher share of production

stemming from these critical biomes of about 90%. This proportion has not significantly

changed since 2000, but absolute volumes have risen from 16 Mt in 2000 to 46 Mt in 2019.

Furthermore, similar to iron ore and bauxite, manganese ore is, to a notable extent, mined

within protected areas. A prominent example are manganese mining operations at Groote

Eylandt: Australia’s fourth-largest island is entirely part of Anindilyakwa Indigenous Pro-

tected Area. Extraction volumes at Groote Eylandt have more than quadrupled between

2000 and 2019, and in 2019, the mine extracted about three quarters of Australian man-

ganese ores.

Besides bauxite, iron, and manganese, nickel ores are most notably mined in Trop-

SubMBF. While bauxite mining decreased in TropSubMBF from 76 Mt in 2012 to 45 Mt in

2019, and shifted to TropSubGSS (49 Mt in 2012 and 72 Mt in 2019), the mining of nickel

ores in TropSubMBF has been increasing during the past two decades. In 2019, about 55%

of global nickel ore extraction took place in the species-richest tropical biome, 66% of which

can be attributed to only two mining sites in the Indonesian Sulawesi lowland rain forests,

Sorowako and Pomalaa. Sulawesi island has been suffering from massive deforestation in

recent decades, with nickel mining known as one among several significant drivers (Supriatna

et al. 2020). In addition, nickel mining is almost entirely conducted within a 20 km distance

to protected areas, and about half of all ore is extracted at 5 km or less from protected
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areas. However, in contrast to bauxite and iron ore mining, nickel is hardly mined within

protected areas.

The world’s largest copper and gold deposits are located in DesXS, and hence large

mining projects are located in this biome, such as Escondida and Chuquicamata in Chile,

or Morenci and Bingham Canyon mines in the USA. The fact that copper and gold ores

are predominantly mined in desert ecosystems is reflected by water pressure indicators, as

becomes evident in Figure 2.6C. Approximately 40% of all copper ore is mined inside the two

highest AWARE deciles. While gold ore extraction shows a decreasing trend in the third

highest decile of scores around 30, iron ore extraction substantially increased for regions

with AWARE scores between 17 and 28. These include several Australian iron ore mines

located in the Pilbara shrublands, such as Hope Downs, the Sino-Iron project, and Roy

Hill, which may have significant impact on groundwater and surface water in that area (WA

Government 2009). Nickel mining tends to affect mostly areas with low AWARE scores.

However, we also notice a rapid increase in the second decile since 2016.

2.3.4 Regional hotspots

One of the innovations of our study is to show regional mining patterns over time based on

spatially explicit accounts of metal ore extraction. In order to estimate regional trends, we

conducted a GWR analysis. As noted in Section 2.2.2, the framework of a GWR considers

both reported volumes for each mine and volumes for respective neighbouring mining sites,

with more weight given to closer operations. We hence obtained trend estimates for each

mining location not only accounting for the mine itself, but also for surrounding activities,

enabling us to provide an overview of the trends across agglomerations of mining projects. In

Figure 2.7, we present all positive 2000-2019 trend estimates for total metal ore extraction.

We limit results shown on the map to only positive coefficients in order to highlight hotspots

of increased production, the focus of this study. A map including negative GWR trend

coefficients and metal-specific maps are provided in Appendix A.2. Table 2.1 lists selected

hotspots with their respective GWR coefficients, biome, distance to the nearest protected

area, AWARE score, and average annual extraction.

On the one hand, GWR results reveal global hotspots of densification, i.e. positive trend

coefficients for mining regions where extraction volumes have on average increased. We

find positive coefficients for 1272 site observations. The regions with the highest extraction

growth rates (between 7% and 10% per year) are located in mining clusters in Peru, the DR

Congo, Zambia, India, China, and in Western Australia. Highest average annual growth is

reported for iron ore and bauxite sites in Odisha, Eastern India. On the other hand, 1659

site observations yield negative trend coefficients and can therefore be interpreted as regions

with decelerating extraction. In the following, we highlight some examples, connecting to

other findings from the previous sections.

Countries along the Andean Range tend to be strongly involved with mining. For Peru,

we can identify mining intensification in the south of the country, whereas extraction volumes

on average decreased in the north. The densification hotspots are represented in Table 2.1

by the example of the five mines with highest growth coefficients inside Peru. They are

located in the Central Andean puna and Sechura desert ecoregions, and lie within areas

reaching a particularly high AWARE score of 28.27. Significant mining intensification at
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Figure 2.7: Mining sites with positive trends in metal ore extraction between 2000 and 2019. The linear
coefficients were estimated for each mining location using GWR. The map is a Robinson projection. Based
on SNL (2020) and UN IRP (2017) conversion factors. Technical notes on GWR are provided in Appendix
A.2.

these hotspots is cause for concern because Peruvian regions suffering from water scarcity

are shown to be particularly vulnerable to ecological distribution conflicts related to mining

and water competition (Salem et al. 2018; Bebbington and Williams 2008).

For Brazil, we find substantial extraction growth in the state of Minas Gerais (up to 5%

p.a.), while mining regions outside Minas Gerais stagnated on average. Four out of the five

Brazilian mines with the highest growth coefficients are located no farther than 5 km away

from natural reserves (e.g. Serra do Gandarela National Park). Furthermore, many projects

of that hotspot are large-scale and situated in species-rich tropical biomes. One of the most

serious threats to the environment and people in that region are tailings dam failures of

large mining projects. Vale’s Mina Córrego do Feijão, for example, gained notoriety due to

the dam disaster near the municipality of Brumadinho in January 2019, releasing around

12 million cubic meters of tailings and killing at least 259 people (Freitas and Almeida

2020). Brazil has hundreds of such tailings dams, most of them in the state of Minas

Gerais (do Carmo et al. 2017). Brucutu mine, extracting almost 18,000 Mt ore per year on

average and with an average extraction intensification of 5.2%, is such an example, and it

is located in proximity to the previous tailings dam failure. In 2019, as a response to the

Brumadinho dam disaster, disposal of tailings at the Laranjeiras dam, part of Brucutu mine,

was temporarily suspended due to safety concerns. In November 2015, Minas Gerais had

already experienced a major environmental accident, when two dams at Samarco minining

complex (4.9% average annual extraction expansion) collapsed, causing 19 casualties and

far-reaching contamination of rivers, eventually spreading pollutants over more than 600 km

(do Carmo et al. 2017).

With average annual growth rates of approximately 7%, the strongest intensification

of mining activities in Africa is found in the border region between Zambia and the DR

Congo, known as the Central African Copperbelt. The highly mineralised region lies in the
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Country Mine β [%] Biome Dist. PA [km] AWARE µ [kt]

Peru Ares 7.27 Montane Grasslands & Shrublands 19.80 28.27 1529.51
Santa Rosa 7.19 Deserts & Xeric Shrublands 20.18 95.54
Orcopampa 7.18 Deserts & Xeric Shrublands 21.52 2639.23
Arcata 7.11 Montane Grasslands & Shrublands 4.89 729.17
Shila-Paula 7.08 Montane Grasslands & Shrublands 53.93 295.81

Brazil Brucutu 5.22 Trop. & Subtrop. Moist Broadleaf Forests 14.69 3.14 17958.33
Sao Bento 5.12 Trop. & Subtrop. Moist Broadleaf Forests 4.08 367.65
Gongo Soco 5.05 Trop. & Subtrop. Moist Broadleaf Forests 1.49 5464.29
Samarco 4.87 Trop. & Subtrop. Grasslands, Savannas & Shrublands 1.92 17827.88
Alegria 4.84 Trop. & Subtrop. Grasslands, Savannas & Shrublands 3.05 12720.52

DR Congo Kamoto 7.21 Trop. & Subtrop. Grasslands, Savannas & Shrublands 18.15 1.67 2762.92
Metalkol RTR 7.21 22.47 1846.24
Mutoshi 7.20 33.32 248.28
Kolwezi 7.20 24.66 1359.43
Tilwizembe 7.16 48.99 48.87

Zambia Trident - Sentinel 7.42 Trop. & Subtrop. Grasslands, Savannas & Shrublands 5.22 7.43 16301.33
Lumwana 7.16 0.00 10431.14
Kansanshi 6.85 10.77 21100.96
Muliashi North 5.80 5.72 3224.72
Baluba 5.78 4.50 1621.13

India Malangtoli 10.83 Trop. & Subtrop. Moist Broadleaf Forests 59.15 16.90 573.33
Silijora-Kalimati 10.71 50.01 87.10
Unchabali 10.70 45.90 1284.75
Dubna 10.62 50.85 11.86
Khondbond 10.62 44.61 748.19

Australia Spinifex Ridge 9.14 Deserts & Xeric Shrublands 88.89 27.19 765.14
Corunna Downs 9.13 120.61 512.00
Bamboo Creek 9.11 79.34 5.12
Nullagine 9.06 147.96 1155.92
Mt Webber DSO 8.97 78.24 3783.89

Table 2.1: Mines selected by highest five coefficients (β) from GWR (average growth p.a.) per hotspot
country. Dist. PA indicates distance to nearest protected area, µ indicates average annual ore extraction
based on SNL (2020) and UN IRP (2017) conversion factors. Empty cells in biome and AWARE column
indicate constant characteristic for all five mines.

TropSubGSS biome, more precisely the Central Zambezian miombo woodlands. It is known

for its vast copper deposits, but is also the habitat for a great variety of wildlife such as

large mammals. The adverse effects of mining expansion in the Copperbelt, especially on

forests and forest livelihoods, are evident. Moving millions of tonnes of earth, industrial

copper mining has directly and indirectly caused significant environmental change due to

extensive forest clearings, pollution of soil, air and water, and population pull effects of

mining towns (Mwitwa et al. 2012; Peša 2020). Our results show that Zambian mining

hotspots are located in particularly close proximity to protected areas. Moreover, Lumwana

mine with an average annual growth coefficient of 7.16% lies partly within Acres No. 105

National Forest.

The SNL (2020) data supports that metal mining has become a major industry in India.

Growth rates of metal ore extraction such as bauxite and iron ore are exceptionally high

in the eastern territories and the northwest. Yet, GWR results stress substantial extrac-

tion growth for some of the country’s less prominent (and smaller in size) mining projects.

While India’s largest projects, such as the Chhattisgarh Group, Sesa Goa, and Noamundi

iron mine, extract between 15 Mt and 25 Mt of metal ore per year (and results yield coeffi-

cients between 2% and 9%), average annual ore extraction for the mines listed in Table 2.1

lies between 0.01 and 1.3 Mt. Extraction volumes of these iron ore and bauxite sites, how-

ever, grow at remarkably swift rates of about 10%, i.e. the highest rates observed globally.

They are located in the tropical East Deccan moist deciduous forests, which offer a spa-
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cious and rich habitat for a great number of species, including endangered large vertebrates

(Wikramanayake et al. 2002). Extensive extraction gains in this area, as they are observed,

hence endanger conservation of a still-intact habitat.

In the Global North, trend estimates for mines located in the Unites States and eastern

Canada indicate an average decline of mining activities, while slight intensification is found

for the Canadian Rocky Mountains. For Europe, we find almost entirely positive trend coef-

ficients, indicating growing metal extraction volumes within Europe, although at generally

low levels of absolute extraction. A geographical divide is apparent in Australia. Large

iron ore sites in Western Australia are the drivers for intensification rates up to almost 10%

and make the region a global hotspot, while sites across the eastern half of the continent

show an average decline by about 2.5% per year. Highest coefficients are reported for mines

in Pilbara, which hosts some of the world’s largest iron ore mines. Among others, Mount

Webber direct shipping iron ore mine is located at that hotspot, with a growth coefficient

of almost 9%. The large mining complex, opened in 2014, continuously increased annual

extraction volumes and mined more than 7 Mt of ore in 2019. Australian mining activities

also demonstrate that the movement of vast amounts of earth not only causes pollution and

degradation of ecosystems and loss of biodiversity, but also destroys cultural and spiritual

heritage. The mining expansion in Pilbara, for example, disturbs significant Indigenous

sites. In May 2020, Anglo-Australian multinational Rio Tinto was blamed for destroying

the Aboriginal heritage of 46,000 year old Juukan Gorge rock shelters in order to expand

Brockman 4 mine (EJatlas 2020).

2.4 Discussion

2.4.1 Mining’s socio-ecological impacts

In contrast to other frameworks that conceptualise the socio-ecological crisis and possible

responses at high levels of aggregation and abstraction (e.g. Rockström et al. 2009), our

results demonstrate concretely where, from 2000 to 2019, the surge in global mining has

been implemented. What we demonstrate in particular is that increased production occurs

to a large extent in areas requiring protection. Almost 80% of global metal extraction in

2019 occurred in the world’s most species-rich biomes, 90% of mining sites were in areas of

relative water scarcity, and almost 50% of extraction occurred at less than 20 km distance

or even within protected areas. By highlighting that these are especially vulnerable areas, it

is not our intention to suggest that mining should be expanding “elsewhere”, in areas that

are supposedly less vulnerable. Instead, we interpret the degree to which mining occurred

in areas that – by indirect or direct stipulation - should be protected to demonstrate the

environmental unsustainability of the current mode of expansion.

The findings of this paper compare well with previous, often cross-sectional, studies, while

contributing to the literature by offering annual estimates and trends for the nine metals

at hand. Northey et al. (2017), for example, also find highest average AWARE scores for

copper, medium water risks for lead-zinc resources, and nickel to be mined predominantly in

areas that are exposed to less water risks. While the shares of copper, lead and zinc mining

in critical categories are stable, we do, however, detect a recent surge in nickel mining for

higher AWARE scores. Durán et al. (2013) find that 7% of mines in their sample overlap
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with protected areas and 27% lie within a 10 km boundary. Our findings are slightly more

conservative, but just as alarming. We furthermore complement the findings of Durán et

al. (2013) by the observation that extraction volumes have considerably increased within

protected areas since 2000. A comparison with Murgúıa et al. (2016) shows that results are

sensitive to the choice how to proxy biodiversity. Our findings are in line with their study

regarding bauxite, while our approach does not support their conclusions that silver mining

showed a high concentration in “high diversity zones” (ibid: 416).

The global approach applied in this study also entails some uncertainties and limitations.

Using crude ore extraction estimates instead of often reported net-metal contents more

accurately quantifies pressures that are exerted by the mining industry on the environment

and hence our estimates also serve as better indicators with regard to potential impacts.

A drawback to our crude ore approach is that assumptions on average ore grades place

substantial variances around these estimates. However, we argue that such uncertainties

affect the conclusions of this work less, because we can assume high correlation between

our estimates and actual extraction volumes from conducted robustness checks. Introducing

mine-specific conversion factors can thus be assumed to have level effects on our global-scale

results rather than causing substantial changes of our findings on the distributional structure

and trends of global mining activities.

Further, by keeping a global scope while utilising broad categories of associated vulnera-

bility, we provide only a crude assessment about where environmental impacts may be more

severe than elsewhere. This approach is beneficial as it serves as an early warning mech-

anism through a trend analysis of the global mining sector, helping to identify potential

high-impact areas. Nevertheless, we need to stress that we can only illustrate threats to the

environment in terms of potential impacts or a contextual risk. Estimating actual impacts

would require more locally specific data such as actual mine practices and more precise infor-

mation on (changes in) the mines’ immediate surroundings. Species-richness, for instance,

serves as broad indicator, while biodiversity and hence also impacts are heterogeneous across

space within the same biome.

Our study thus provides signposts to where more in-depth local studies are needed that

consider the interplay of regional circumstances at the site- and case level. On the one hand,

we support efforts to evaluate the impacts of the global surge in mining based on investi-

gations that are tied to specifically selected cases. On the other hand, there is great need

for more quantitative studies on the magnitude of impacts induced by the entire mining

industry. Any expansion of mining constitutes a trade-off for other human and non-human

uses or values attached to land and resources. More accurate assessments of mining projects’

propensities to exert additional pressures such as biodiversity loss, deforestation, water and

air pollution as well as social conflicts could help constructing spatially varying impact

measures. These indicators could then be used for global assessments of mining impacts

and industry monitoring. Importantly, more knowledge is needed about the nature and

the extent of the spatial transmission and the temporal persistence of mining-induced en-

vironmental change. Such improvements will help not only to anticipate the consequences

of increased metal production, but also to evaluate current progress towards more sustain-

able technologies and better regulations, as well as to better consider competing stakeholder

interests.
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Our research points mostly towards the potential environmental impacts of mining ex-

pansion where it occurs. Simultaneously, designating land (and resources in a much wider

sense) to be used for mining precludes many other human uses or the non-use of that land.

Environmental justice movements opposing mining have raised numerous issues from the

loss of land and water for subsistence uses to local air and water pollution and the destruc-

tion of cultural values (Martinez-Alier 2001; Temper et al. 2015). The categories we utilised

may often proxy the risk of social disruption just as much as they indicate environmental

vulnerability. Conflicting use and pollution of water is a frequent cause for resistance of

local communities against mining projects, even though mining operators insist that tech-

nologies would guarantee sustainable use of water resources and concrete water monitoring

plans would already be in place at major mining projects (Bebbington and Williams 2008).

Geological conditions determine that the deposits of some metals are predominantly mined

in areas where water is scarce. Our study illustrates the massive extraction of copper and

iron ores in desert ecosystems and areas of below-average water availability, which inevitably

raises questions about potential conflicting uses of water and strategies to prevent future so-

cial disruptions in affected regions. Similarly, protected areas secure livelihoods and cultural

values for many indigenous populations. We did not distinguish between indigenous lands

and other protected areas in this study and we did not consider informal mining, which is

evidently affecting protected lands in many regions (see, e.g., Asner and Tupayachi 2016).

However, our results suggest that public resistance against mining operations may rise due

to increased production within and close to protected areas and we hence highlight the need

for investigating and monitoring social dynamics around such areas.

2.4.2 Implications for mining companies and policies

Accelerated global extraction of metals and minerals particularly threatens vulnerable

ecosystems and selected regions emphasised in this study. To reduce associated risk in

the short and medium term, the impacts of mining itself need to decrease. There is no

doubt that the mining industry has already developed and implemented improvements in

environmental management processes and impact mitigation systems, such as progressive

rehabilitation throughout the life cycle of a mine. While considerable advancements were

also made in regulatory systems (e.g. cumulative environmental impact assessment policies

and improved regional planning), environmental minimum standards and better sustainabil-

ity practises and performance must be realised at the mine sites (IRMA 2020) and above

and beyond corporate level commitments, as e.g. demanded by the International Council

on Mining and Metals (ICMM 2020).

Evaluating, challenging and improving this ongoing transition also includes critically re-

viewing and reforming national environmental regulations. Our work contributes to such a

discourse by pinpointing regions with expansive dynamics and alarming developments such

as a surge in extraction within protected areas. These insights could be used for more accu-

rately targeting regional policies. As shown in Section 2.3.4, areas with highest extraction

growth rates are, with the exception of Australia, located in low- and middle-income coun-

tries of the Global South including Brazil, the DR Congo, India and China. These countries

score lower in the OECD Environmental Policy Stringency Index as compared to industri-

alised countries (OECD 2021). However, according to this composite measure, nations such
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as China and India have put significant efforts in improving environmental standards, while

the index stagnates at very low levels for Brazil. The Central African Copperbelt also marks

a challenging region with substantial room for improvements at the policy and company level.

Even though forms of protective laws and regulations were established in the 1990s in Zam-

bia and in the 2000s in the DR Congo, this change in environmental management practices

remained rather a change on paper, while mining companies intensified extractive operations

based on a dominantly economic and technocratic rationale (Peša 2020). Concrete oppor-

tunities for action include rethinking mining governance such that it avoids unnecessary

large-scale infrastructure, averts opening up untouched spaces to settlement, considers cu-

mulative impacts across space (such as watershed regions) and over time and involves most

affected populations in the decision making (Bebbington et al. 2020). National and sub-

national governments are integral parts of the International Resource Panel’s “Sustainable

Development Licence to Operate” framework (UN IRP 2020), which makes a strong case

for policy coherence along multiple levels that is grounded on robust laws and regulations:

National governments have the opportunity to define broad national development goals and

to require mining activities being aligned to these. They can do so, for instance, through the

use of auctioning, given that government policy objectives are clarified and made publicly

available well in advance of the auction. Sub-national and local governments, in turn, have

the ability to actively collaborate in local development planning and to steer negotiations

regarding trade-offs between the environmental, economic and social dimensions of mining

operations.

The shared knowledge as to the distribution and the contextual risk of increased mining,

to which we have contributed with our research, turns the decision to expand mining any-

where into an informed decision to inflict negative impacts on the environment and human

communities. Any expansion therefore arguably requires tight governance of which metals

can be extracted, not just when and where, but also for what purpose and by what means.

One possible solution how both of these aspects could be controlled better might be more

vertical integration of mining in global supply chains, making these less complex and more

transparent, which should be advantageous to consumer facing downstream companies, e.g.

in the automotive or electronics sectors.

2.4.3 The global drivers of accelerated mining

While our results have clear implications for mining companies and related regulation, the

global framework in which mining actors operate needs to be equally considered, when dis-

cussing options to reduce the socio-ecological impacts of mining. Given that any expansion

of mining has detrimental environmental and social impacts, it seems straightforward to call

for a halt to mining expansion, as has, in fact, been the request throughout various environ-

mental justice movements (e.g. Temper et al. 2015). However, this claim is in stark contrast

to expected future trends. Global demand for metal ores is expected to significantly increase

in the coming decades (Elshkaki et al. 2018) mostly due to the build-up of global material

stocks (Krausmann et al. 2017; Krausmann et al. 2020) and the expansion of low-carbon

infrastructures, such as wind and solar energy and battery storage capacities (Elshkaki and

Shen 2019; Watari et al. 2020). It will be impossible to sustain increasing levels of con-
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sumption in those areas while simultaneously curbing the negative environmental and social

impacts of metal mining.

The increasing metabolic inequalities of current growth trajectories also play an impor-

tant role. Global supply and use chains currently direct the additional resources gained

by metal mining to places of already high or rapidly increasing consumption and material

wealth (Dorninger et al. 2021). High-income and some middle-income economies engage

in net-appropriation of raw materials and without net-imports would not be able to pur-

sue their models of industrialised growth. While the mature industrialised economies have

largely exhausted their domestic resource base, countries in the earlier phases of capitalist

industrialisation continue to hinge their economic “development” on extractivist agendas

(Gudynas 2010), taking on roles of global suppliers of primary commodities while foregoing

the higher value added associated with refinement and manufacturing (UNCTAD 2019).

As a consequence, final consumers are in many cases geographically distant from resource

extraction and the related impacts (Schaffartzik et al. 2016; Gudynas 2010). Due to these

“tele-connections” between production and consumption, the systemic character behind eco-

logical distribution conflicts needs to be addressed from a global perspective, acknowledging

pertinent patterns of ecologically unequal exchange (Dorninger et al. 2021; Xu et al. 2020b).

2.5 Conclusion

To date, there is no reason to expect the expansion of metals and minerals extraction to

halt in the near future. In contrast, the accelerated build-up of global material stocks and

the development of new and supposedly more sustainable technologies will create growing

markets for metal ores.

In this study, we investigated and contextualised metal ore extraction of the past two

decades. We illustrated the types and amounts of commodities extracted, along with a

detailed assessment of their geographical location. Backed by the rich empirical evidence that

mining activities induce hazardous changes to the environment, we considered areas around

mining sites to be more strongly at risk and reflected how severe mining pressures may

impact ecosystems, in particular those already recognisable as vulnerable. It is remarkable

that, compared to the total global surface, relatively few and small areas supply the metallic

basis for the entire industrialised world. However, based on what we know so far about the

impacts of minerals extraction on the environment and their spatial transmission, it seems

highly likely that indirect effects distant from mines may be extensive. We found that the

intensification of extraction shows distinct regional patterns, which increase the pressure

on vulnerable ecosystems in several biomes across the globe. In order to preserve both

livelihoods and habitats to many, often rare and endangered species, particularly tropical

ecosystems of vast biodiversity require stronger protection from interference through mining.

The increase of metal mining in vulnerable and protected areas shown in our study points

to the challenge of reversing current unsustainable trends in resource extraction.

Metals are point resources and do not occur ubiquitously. Rather than implying that

there is no choice but to mine them where they do occur, we have argued that this in

fact supports an even stronger case for reducing resource consumption, first and foremost

of the world’s wealthiest economies, in order to protect vulnerable ecosystems and their

inhabitants. Further pursuing this agenda can be supported by the type of information
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we have sought to develop for this article, including the spatially explicit mapping, the

historical contextualisation and the assessment of the status quo of resource development

and its transformative potential. Aggregate global conceptualisations and targets must be

integrated with in-depth knowledge of local-level consequences of mining expansion. For the

examples of selected hotspots of mining expansion, we demonstrated that many of them are

unambiguously related to local socio-environmental risk and disasters.

Further investigating and monitoring the spatial and temporal evolution of metal mining

can serve as an early warning mechanism and will help to anticipate potentially hazardous

developments and better-inform mining management and policy making. Our results have

implications for the way we organise the biophysical basis of our economic systems, because

they underline that reoccurring local ecological distribution conflicts all across the globe

are not to be solved at the case level. Instead, they are consequences of an expansion

systematically affecting species-rich, water-scarce, complex, fragile and hence vulnerable

ecosystems.



Chapter 3

Transient economic benefit and

persistent forest loss: regional

impacts of mining in Brazil

Abstract: Environmental and social risks in mining regions often juxtapose promises

of local economic growth. Brazil, a major global mineral supplier and conservation

leader, has pursued resource-led development despite mining’s threat to its forests.

Yet, the efficacy of this development strategy is uncertain. Here we investigate min-

ing’s impact on deforestation and regional economic growth in Brazil. We find sub-

stantial effects of mining on deforestation rates for less regulated concessions, while the

associated boost in regional Gross Domestic Product (GDP) is transient. The shortly-

waning economic benefit correlates strongly with global mineral prices, suggesting that

Brazil’s extractive industries have failed to deliver lasting local economic advantages.

Our results challenge the perception that mining inherently drives regional economic

development. As global demand for minerals rises, especially for the energy transition,

strategic mining investments must be revised to prioritise sustained local progress,

nature conservation and well-being.

3.1 Introduction

Global mining activities cover more than 100,000 km2 of land (Maus et al. 2022; Tang

and Werner 2023), leading to significant environmental and social impacts both directly

at the mine sites and in their surrounding areas (Giljum et al. 2022; Sonter et al. 2020;

Bebbington et al. 2018a). Yet, minerals and fossil fuels are indispensable for various aspects

of human society, such as housing, energy, transport, and communication infrastructure.

This creates a tension between domestic economic opportunities and the associated social

This chapter was co-authored with Victor Maus, Juliana Siqueira-Gay, Tamás Krisztin, and Michael
Kuhn. The research was supported by the European Commission under the ERC Consolidator Grant
FINEPRINT (Grant No. 725525) and by the Austrian National Bank (OeNB) under Grant No. 18799.
Part of the research was developed during the Young Scientists Summer Program at the International
Institute for Applied Systems Analysis in Laxenburg, Austria, with financial support from the Austrian
IIASA Committee. Additional support was provided by the Austrian Federal Ministry of Education, Science
and Research through the Marietta Blau Grant (MPC-2022-02358), administered by the OeAD-GmbH.
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and environmental risks (Bebbington et al. 2008; UN IRP 2017b; Martinico-Perez et al.

2018). Consequently, there are fundamental uncertainties regarding the compatibility of

mining with sustainable development (Dubiński 2013; Alves et al. 2021).

Brazil is not only among the world’s leading suppliers of iron, gold, copper, and bauxite

but also a significant hub for tropical forest conservation. Among the various adverse con-

sequences associated with mining (Escobar 2015; Silva Rotta et al. 2020; de Souza Porto

and Rocha 2022; Ferrante and Fearnside 2022; Siqueira-Gay et al. 2020; Rorato et al. 2020),

mining-induced deforestation is especially pronounced in Brazil (Sonter et al. 2017). Forest

loss is caused directly at the mine sites, such as at the actual extent of open-pits and forest

clearing for on-site mining facilities, waste rock dumps and tailings ponds, but also indirectly

due to transport, storage, processing and energy infrastructure build-up outside designated

mining areas, as well as population pull effects and related urban and agricultural expansion

(Giljum et al. 2022). Alarmingly, the country’s mining territory expanded from 187 thou-

sand ha in 2005 to 351 thousand ha in 2020 (MapBiomas 2023, Figure 3.1), posing threats

to areas vital for forest conservation and biodiversity (Sonter et al. 2017; Siqueira-Gay and

Sánchez 2021; Luckeneder et al. 2021). This is of particular concern due to the resultant

loss of natural habitats and destruction of carbon sinks, which could undermine efforts to

meet global climate targets (Gatti et al. 2021).

While there is broad consensus about the environmental and social risks of mining in

Brazil, opinions diverge regarding the potential economic advantages that mining could bring

(de Castro Gentil et al. 2019; Fernandes and Araujo 2016). Historically, Brazil’s extractive

sector and institutions have portrayed both industrial and informal mining as pivotal to the

economic development of its resource-rich peripheral territories (de Castro Gentil et al. 2019),

often in forested remote regions. Some studies support this view, showing that mining can

spur regional economic development through job creation, local procurement, and associated

local spillovers (Aragón and Rud 2013; Arias et al. 2013; Aragón et al. 2015). However,

this perspective is countered by research that points to the negative economic implications

of resource wealth according to the “resource curse thesis”. Such studies argue that the

presence of abundant natural resources can hinder the growth of sectors like manufacturing,

education, and health – sectors which are vital for sustained growth (Auty 1993; Sachs and

Warner 2001; Humphreys et al. 2007; Manzano and Gutiérrez 2019; Owen et al. 2021).

Notably, for Brazil, empirical evidence remains inconclusive as to whether mining catalyses

sustained local economic development.

This study investigates the impact of mining on deforestation and regional economic

growth in Brazil at the municipality level. Moreover, it differentiates between industrial

and wildcat mining, known as “garimpos” (Figure 3.1D), both provided for in Brazilian

legislation (Appendix B.1). By doing so, it offers a focused analysis that contrasts with

broader assessments of macroeconomic mining impacts on national indicators (Sachs and

Warner 2001; Havranek et al. 2016). A regional focus is warranted to understand the extent

to which economic activities, such as mining, benefit the local economies that constitute

the concrete living environment of the population. Moreover, it is warranted as a means

to understand the spatial distribution of the gains and losses from such activities. We

employed panel-structure Bayesian spatial econometric models, regressing 5-year average

annual Gross Domestic Product (GDP) growth rates on a set of determinants for economic

growth, augmented with land cover information and mine locations. The same setup was
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Figure 3.1: Brazilian mining area. Land cover classified as “mining” (MapBiomas 2023). Total area in
ha per municipality in 2020 and indication of the Legal Amazon and Minas Gerais (borders in red) (A),
average annual change of mining area between 2005 and 2020 in % (B), 2005-2020 mining area by region in
1,000 ha (C) and 2005-2020 mining area by mining regulation type in 1,000 ha (D).

replicated to assess the effects of mining on forest loss. Besides its advantage of explicitly

accounting for and evaluating the spatial spillovers that are central to this work, our spatial

econometric approach offered a robust statistical framework that considered various national

and local drivers of regional GDP and forest loss. This approach contrasts with experimental

approaches or before-after control-impact assessments, which need careful monitoring of both

impact and control groups over time. All models relied on a consistent set of georeferenced

data, sourced from remotely sensed land cover data products (MapBiomas 2023), Brazil’s

socioeconomic statistics (IBGE 2023a; IBGE 2023b; FIRJAN 2018) and biophysical records

(CRU 2021; USGS 2021), spanning 5,262 municipalities from 2005 to 2020. Our findings

reveal significant mining effects on deforestation rates in less regulated concessions, whereas

the surge in regional GDP proves transient and eventually becomes negative.

3.2 Results

3.2.1 Effects of mining on regional GDP

The Brazilian economy is widely influenced by mineral extraction. Throughout the study

period, the economic growth of all Brazilian municipalities showed a strong correlation

with global metals and minerals prices. However, our focus diverged from this overarching

relationship between mining and the country’s economic performance as we explore regional

disparities observed between mining and non-mining municipalities. Descriptive statistics

suggest nuanced dynamics between these two categories, as mining municipalities tend to

have outperformed non-mining municipalities during periods of ascending commodity prices

and vice versa (Figure 3.2). Differences were notable in 2004 and 2010, when increases in

metals and minerals prices coincided with 4.0 percentage points (pp) and 3.1 pp higher GDP

growth rates, respectively, in mining as compared to non-mining municipalities, and in 2015

and 2016, when mining municipalities fell back by 2.6 pp and 2.8 pp, respectively, suggesting

greater vulnerability to the recessionary pressures within these areas. Nevertheless, these

observations necessitated further scrutiny within a controlled modelling framework, isolating
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the effects of mining at the municipality level by accounting for national macroeconomic

trends and potential overarching and regional confounding factors.

Figure 3.2: Mining, commodity prices and the GDP. Global prices of metals and minerals (World
Bank 2023a) and median annual growth rates of GDP per capita in real Brazilian Real (IBGE 2023a; IBGE
2023b; World Bank 2023b) for mining and non-mining municipalities.

Figure 3.3 depicts mining impact estimates, i.e. the estimated differences in GDP growth

in pp between mining and non-mining regions after having accounted for several observed

drivers of economic growth, as well as overarching yet unobserved economic factors, such

as national policy schemes and world market commodity prices that may have influenced

municipalities regardless of their exposure to mining (see Methods for details). We used the

presence of industrial and garimpo mining within a municipality as the mining indicator to

facilitate the interpretation of results. In Appendix B.6, we show that mining intensity in

terms of mining area within each municipality does not change our main conclusions (Figures

B5 and B6). Each panel shows median impact estimates surrounded by 95 % certainty

intervals for the respective years or multi-year periods (pooled impacts for pre-2010 and

post-2010 time frames) in two colours. The darker colour represents direct impacts within

mining municipalities and the lighter colour indicates the magnitude of spillover effects of

mining across municipality borders. All impacts indicate estimated average differences as

compared to non-mining, non-neighbouring municipalities, keeping all other municipality

characteristics in the model constant.

The findings in Figure 3.3A reveal that the local economic effects of industrial mining

activities were ambivalent for Brazil across the 5,262 municipalities. The extent and direction

of direct and indirect (spillover across municipality borders) impacts of industrial mining

varied significantly between the two time periods, previous to 2010 and since 2010 (see

right panel in Figure 3.3A). Before 2010, industrial mining led to an average direct boost

in GDP growth rates as compared to non-mining lying between 1.5 pp and 1.9 pp with

additional spillover between 1 pp and 2.0 pp with 95 % certainty. The spillover indicates that

municipalities near municipalities with industrial mines experienced a positive additional

GDP growth (1.5 pp on average) relative to those without mining municipalities in their

surroundings. However, this spillover effect on neighbour municipalities turned negative

after 2010 (lower than -0.1 pp with 97.5 % certainty). The direct effect of mining is not

conclusive after 2010, as the average effect could be either positive or negative, between -0.2

pp and 0.1 pp.

Analysing yearly effects (left panel in Figure 3.3A), mining showed mainly positive direct

stimulus and spillover before 2010, which is in line with the pooled estimates. The following

years showed more intricate results, with the uncertainty ranging from positive to negative



3.2. RESULTS 47

Figure 3.3: Regional GDP impact estimates. Impacts of binary industrial (A) and garimpo (B) mining
indicator on 5-year average annual GDP per capita growth. Left panels show yearly estimates, right panels
show pooled (pre 2010 and since 2010) estimates. Estimates were obtained from 20,000 Markov chain Monte
Carlo iterations, with the first 10,000 being discarded as burn-in. Points denote posterior means, error bars
show 95 % posterior credible intervals.

values in several years. Yet, the average estimates of yearly effects were mostly negative with

distributions centred on values that were lower than those observed in years preceding 2010.

By 2012, effects were consistently negative and lower than -0.07 pp and -0.3 pp with 97.5

% certainty for direct and spillover effects, respectively. The estimates indicate significant

drops from 1.4 pp direct and 2.5 pp spillover effects in 2009 to -0.9 pp direct and -0.7 pp

spillover effects in 2011. After 2011, the negative impacts slowly faded, and eventually,

the direct effect turned positive again in 2015 (0.8 pp), while the spillover effect remained

ambiguous with an average effect lying between -0.9 pp and 1.2 pp for the same year.

Contrasting industrial mining, garimpo mining showed weaker and less conclusive effects

on GDP throughout the entire observation period. A small positive direct impact only for

the period before 2010 was observed (0.3 pp on average) as depicted in the right panel in

Figure 3.3B. The annual direct and spillover effects were all centred around zero (see the

left panel in Figure 3.3B) with uncertainty on the effects ranging from negative to positive

values for every observed year, which suggests negligible effects of garimpos on the GDP of

Brazilian municipalities. The complete set of regression output including all predictors is

provided in Appendix B.4.
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3.2.2 Mining-induced forest loss

Figure 3.4 shows that Brazilian mining municipalities experienced higher forest loss rates

than non-mining municipalities (36.7 % difference in medians between 2003 and 2020).

Again, the figure merely suggests a positive link between mining and increased forest loss

rates, however, without considering any hidden, potentially correlated deforestation drivers.

We therefore followed the statistical approach introduced above, ensuring control over both

observable and latent factors that could confound the relationship between mining and forest

loss.

Figure 3.4: Mining and forest loss. Median annual forest loss rates (ha forest loss per km2 municipality
area, zero forest loss municipalities excluded) for mining and non-mining municipalities (MapBiomas 2023).

In contrast to the GDP growth, which predominantly demonstrated effects from indus-

trial mining, forest loss was associated with garimpo mining, especially in the earlier years

of the observation period, as seen in Figure 3.5. Note that the figure mirrors the presenta-

tion of Figure 3.3, displaying direct and spillover impact estimates within 95 % uncertainty

intervals. Prior to 2010, municipalities with garimpo operations faced an average loss of 0.03

ha more forest per km2 compared to areas without. Even more pronounced, municipalities

neighbouring areas with garimpo activities saw a notable spillover effect, experiencing an

average increase in forest cover loss by 0.32 ha per km2, as emphasised in the right panel of

Figure 3.5B. In absolute terms, impact estimates suggest a direct forest loss of 894 ha per

year associated with garimpos and 4,320 ha spillover effect, as depicted in the right panel

of Figure 3.5D.

However, post-2010 data, as indicated in the right panels of Figure 3.5B,D, offer less

consistent findings. The relative forest loss due to garimpos appears to have become less

impactful for this period. Yet, the annual effects of garimpo on forest loss in neighbouring

municipalities persisted in the most recent years of the time series, as evident from the left

panel of Figure 3.5B. Absolute losses reduced, too, in the post-2010 period, with garimpo

mining causing an estimated annual loss of 270 ha and a corresponding spillover effect of

1,077 ha in neighbouring areas. Interestingly, industrial mining municipalities exhibited a

consistent protective effect (pre and post-2010) on neighbouring municipalities’ forests in

both absolute and relative terms (Figure 3.5A,C). However, in the municipalities hosting

the actual industrial mines, the data is inconclusive, leaving it uncertain whether industrial

mining has a detrimental or protective impact on forests.
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Figure 3.5: Regional forest loss impact estimates. Impacts of binary industrial (A) and garimpo (B)
mining indicator on forest loss in ha per km2 of municipality area. Impacts of binary industrial (C) and
garimpo (D) mining indicator on forest loss in thousand ha. Left panels show yearly estimates, right panels
show pooled (pre 2010 and since 2010) estimates. Estimates were obtained from 20,000 Markov chain Monte
Carlo iterations, with the first 10,000 being discarded as burn-in. Points denote posterior means, error
bars show 95 % posterior credible intervals. Forest loss was defined as negative changes in natural forest
formation based on (MapBiomas 2023).

3.3 Discussion

Our results suggest that economic stagnation and crisis (tied to Brazil’s dependence on

global commodity prices) had a distinct influence, causing a turnaround in the relationship
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between mining and regional economies. Before 2010, a beneficial global environment (high

prices and demand for materials) translated into regional economic growth within and close

to industrial mining municipalities, i.e. the revenues from mining as well as multiplier effects

remained local to a notable extent. These findings contrast the negative relationship that is

typically found in cross-country comparisons (Sachs and Warner 2001) and suggest a strong

positive economic impact of mining that diffuses across municipality borders for example

via labour markets (Alves et al. 2021). The presence of positive spillovers indicates the

existence of diffused backward linkages such as via commuting workers and the emergence of

“mining clusters” that exhibit endogenous development and diversification of the industrial

mix due to agglomeration effects (Arias et al. 2013). However, a growing extractive sector

also interferes with other, potentially more sustainable, local economic structures such as

small-scale agriculture or manufacturing and creates dependence on the mining industry

(Aragón et al. 2015). When the commodity price bubble bursts and the subsequent economic

crisis kicks in, the cycle reverses and by the same backward linkages leads to downward

development in both mining municipalities and their neighbours.

The negligible economic stimulus of garimpos aligns with their frequently illegal nature,

as profits generated often evade official record-keeping. Despite estimations indicating sig-

nificant employment provided by garimpos, such as the presence of approximately 200,000

garimpeiros in the Brazilian Amazon (Bebbington et al. 2018b), the generated profits may

bypass official economic indicators. Furthermore, this observation implies a lack of economic

multipliers that would typically arise if garimpo mining profits were were to flow into local

consumption or investment.

Our results show that the deforestation impact of mining strongly depends on the type

of mining activities and the (in the Brazilian case dual) legal framework they are embed-

ded in. While industrial mining was associated with lower forest loss rates in neighbouring

municipalities, less stringent legal requirements, such as no restrictions on mining tech-

niques, opened the floodgates to adopting environmentally hazardous practices for holders

of garimpo concessions. Indeed, garimpos increasingly adopted methods and machinery

of large-scale industrial exploration and thus departed from the original purpose of the

“Garimpeira Mining Permission” (Manzolli et al. 2021; Cozendey et al. 2022). This devel-

opment is a major explanation for why we found strong forest loss impacts for garimpos, and

it indicates a need for the creation of efficient policies tailored to address the circumvention

of environmental protection laws. Moreover, geographical patterns differ between garimpo

and industrial mining with the former being conducted mostly in the Brazilian Amazon and

industrial mining dominating elsewhere such as in the state of Minas Gerais (see Appendix

B.1). Since garimpos are the primary cause for mining-induced forest loss, prioritising their

regulation can lead to rapid progress in forest conservation. Recognising that gold mining

constitutes the core of garimpo activities in Brazil, it might be an aspiration to halt gold

extraction entirely (Lezak et al. 2022). Such a step, however, will require broad international

political cooperation and is likely to encounter fierce opposition from industry stakeholders.

Finding a balance between forest loss and economic development is a central endeavour

in making extractive economies and related supply chains more sustainable. Yet, our results

revealed a more complex situation than a simple trade-off between the two spheres. While

improved environmental responsibility must be achieved especially in the poorly regulated

informal sector, there is generally no guarantee for mining-induced economic development.
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While industrial mining benefits municipalities and their neighbours during boom phases,

local mining economies can also experience bust phases with stronger negative impacts. This

raises the question of which policies can mitigate negative economic impacts while retain-

ing the positive economic stimulus during boom periods. Creating resilience to temporary

(as found in this paper) or long-term (as discussed in the resource-curse literature) down-

turns is key to guaranteeing the economic sustainability of mining activities. Long-term

strategic planning is needed in this regard, including far-sighted concepts of how to use,

save and invest mining rents for the benefit of local communities and how to reduce the

local economies’ dependence on the mining sector. Currently, mining rents still often fail to

benefit citizens, primarily because largest profit shares accrue to mining companies. This

situation is compounded by continued appropriation of rents at the central level, inefficient

use of financial transfers by subnational and local governments, and a lack of downward ac-

countability and transparency regarding the use of public finances (Arellano-Yanguas 2011).

Moreover, mining operations require strategies addressing socioeconomic perspectives for

mined-out areas.

Revenues from taxes and royalties are considered contributing factors to the socioe-

conomic development of mining regions. The Brazilian CFEM (Financial Compensation

for the Mineral Exploration) tax, for example, generates income for mining municipalities

based on the volume and value of extracted material (Alves et al. 2021). Moreover, local

procurement and employment effects are frequently argued by the mining industry to foster

regional economic development (ICMM 2024b). We showed that these economic dynamics

strongly correlate with external factors such as world market prices. Municipalities may

depend strongly on incomes and jobs from the mining industry, causing a reversal of the

above-stated effects due to recoiling mining activities, job losses, diminished tax revenues,

and a sluggish reorientation of local economic structures in times of falling market prices.

Our findings raise concerns about the alignment of mining with several of the United

Nations’ Sustainable Development Goals (SDGs). While the expansion of the mining sector

is anticipated to provide essential resources for the global energy transition (Sonter et al.

2023) with positive effects mainly on SDGs 7 (affordable and clean energy) and 13 (climate

action), the regions tasked with this supply must cope with the multifaceted social and

environmental challenges posed by mining. These challenges have been expected to be offset

by the inherently inclusive and sustainable economic growth outlined in SDG 8 (Monteiro

et al. 2019). Yet, our results indicate that relying on mining to realise this particular SDG

may be misguided.

To conclude, our findings support the concerns raised earlier that the continued expansion

of the extractive sector can increase deforestation and related pressures on Brazilian forests,

particularly the Amazon, while likely failing economic promises (van der Hoff and Rajão

2020; Diele-Viegas et al. 2020; Siqueira-Gay et al. 2020; Rorato et al. 2020). The study thus

contributes to a better-informed political debate by delivering much-needed quantitative

evidence with relevance not only for Brazil but for resource-rich economies globally.
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3.4 Methods

3.4.1 Econometric framework

To assess the economic and environmental impacts across the entire Brazilian mining sector,

we adopted a well-established econometric approach, building on the extensive literature that

examines the effects of natural resource extraction on socioeconomic indicators (Havranek

et al. 2016). This empirical methodology, also used to analyse the determinants of economic

growth (Crespo Cuaresma et al. 2014; Ertur and Koch 2007) and the causal pathways

of deforestation (Busch and Ferretti-Gallon 2017; Kuschnig et al. 2021) is well-suited for

investigating macro-level dynamics at the regional scale. It allowed us to isolate the effects

of mining by controlling for various observable and unobservable confounding factors, i.e.

factors affecting both the presence of mining and the outcomes of interest (economic growth

and forest loss), thereby also accounting for dynamics that may influence both mining and

non-mining municipalities.

In light of the potential effects of mining activities on neighbouring areas, we aimed to

account for the spatial spread of impacts across geographical locations. Combining well

with the spatial nature of the mining data at hand, this study employed a spatial economet-

ric approach. Spatial models explicitly consider the non-randomness of observations across

space, thus addressing the bias and misleading inference that may result from spatial de-

pendence (Baltagi and Pirotte 2010). Several applied contributions found strong evidence

that socioeconomic and environmental observations were subject to spatial dependence at

regional level, including economic growth (López-Bazo et al. 2004; LeSage and Fischer 2008;

Crespo Cuaresma et al. 2014; Resende et al. 2016) and deforestation (Robalino and Pfaff

2012; Kuschnig et al. 2021).

We employed panel-structure spatial models, using data for 5,262 Brazilian municipal-

ities over the course of 16 years. The computation of five-year average growth rates (see

below) resulted in 57,882 observations. Spatial panel models account for spatial correla-

tions and, at the same time, offer extended possibilities to consider time- or region-specific

idiosyncratic effects (Elhorst 2010). Incorporating time-specific fixed effects, for example,

accounts for factors influencing the dependent variables in specific years of the sample. The

models can thereby consider trends affecting municipalities regardless of their exposure to

mining, such as national (e.g., macroeconomic conditions, environmental and economic poli-

cies) and global (e.g., commodity price fluctuations) factors. We estimated the models using

Bayesian methods following the standard Markov Chain Monte Carlo (MCMC) estimation

framework as proposed for spatial econometrics (LeSage and Pace 2009). The exact estima-

tion procedure is presented in Appendix B.3. As a measure of uncertainty, we report 95 %

Bayesian credible intervals.

Economic growth

The underlying principle is to regress growth rates of countries or regions on income (usually

GDP) at the initial period of a certain growth window as well as on a number of further

determinants of growth. Typically, these include information on population growth, human
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capital stock and sectoral structure such as gross value added or employment across economic

sectors (LeSage and Fischer 2008; Crespo Cuaresma et al. 2014).

Following the literature on economic growth and spatial spillover (Ertur and Koch 2007;

LeSage and Fischer 2008), and in line with the framework demonstrated for the Brazilian

case (Resende et al. 2016), we employed a panel-structure spatial Durbin model (SDM) of

the form:

yt = ρWyt +Xtβ +WXtθ + ξt + ϵt, ϵt ∼ N(0,Ω), Ω = σ2In, (3.1)

where yt denotes an n × 1 vector of regional economic growth rates at time t. As advo-

cated in earlier literature (Caselli et al. 1996), we used five-year periods as growth windows

to smooth over short-term business cycle influences and calculated the respective average

annual growth rates yt = [ln(Y t+5) − ln(Y t)]/5 ∗ 100, with Y t denoting per capita GDP

at time t (results were robust against variations in growth windows, see Figure B7). Xt is

an n× k matrix of k exogenous country characteristics in the initial period. These include

prominent determinants of economic growth such as initial income, population density, edu-

cation and indicators for industrial structure, but also information on mining activities, land

use and land use change. We used interaction terms between binary mining indicators and

yearly dummy variables in order to obtain year-specific effects of the presence of industrial

and garimpo mining. Additionally, in order to obtain pooled effects for the time before and

after 2010, respectively, we ran another model interacting the binary mining indicators with

dummy variables of the respective period. The choice of the year 2010 for separation is based

on our yearly coefficient results. The error term ϵt was assumed to follow a multivariate

Normal distribution with zero mean and a diagonal variance-covariance matrix Ω with con-

stant variance σ2. W is an n×n, non-negative, row-standardised spatial weights matrix. Its

elements impose a structure of spatial dependence upon observational units, setting wii = 0

and wij > 0 if regions i and j are defined as neighbours (i, j = 1, . . . , n). The exact specifi-

cation of W is presented and illustrated in Appenix B.2 and Figure B4. Characteristically

for an SDM, the regression equation includes the spatially-lagged dependent variable Wyt

as well as the spatially-lagged regional characteristics WXt as explanatory variables. The

k× 1 vectors of the unknown parameters β and θ correspond to Xt and WXt respectively,

and ρ (where the sufficient stability condition |ρ| < 1 is satisfied for row-standardised W ,

LeSage and Pace 2009) is a scalar, measuring the magnitude of spatial autocorrelation. If

ρ = 0, we obtain a growth regression model with spatial lags in X (SLX), where regional

growth rates are independent, but WX is still considered. The model collapses into a clas-

sical linear model in the case where both ρ = 0 and θ = 0. Finally, the model considers

a time-specific constant ξt, capturing year-specific confounding factors such as commodity

price dynamics and domestic business cycles.

Forest loss

This model type was designed to assess the effects of mining on forest loss, where again we

used municipalities as observation units. Forest loss is expected to be subject to significant

spatial spillover (Robalino and Pfaff 2012; Busch and Ferretti-Gallon 2017; Kuschnig et al.

2021), which is why we employed an SDM of the form
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ỹt = λWỹt + X̃tδ +WX̃tγ + νt + µt, µt ∼ N(0, Ω̃), Ω̃ = σ̃2In, (3.2)

where the dependent variable ỹt denotes a vector of cleared land within each municipality.

In the n× k̃ matrix X̃t we considered economic growth directly as a control variable instead

of including the full set of growth determinants. Other control variables remained the same

as in the growth specification, because most determinants of economic growth overlap with

indicators used for explaining forest loss (Busch and Ferretti-Gallon 2017). Mining again

entered the model in the form of interaction terms between binary mining indicators and

year and period dummy variables, respectively. Similar to the growth model, νt denotes

a time-specific constant and we again assumed a normally distributed error term µt with

constant variance σ̃2. The k × 1 vectors δ and γ correspond to X̃t and WX̃t respectively

and λ is the spatial coefficient. The spatial weights matrix W and the properties of the

spatial model remain the same as in Equation 3.1.

Direct and spillover impacts

Assuming independence of observations, the estimation coefficients of conventional (non-

spatial) linear models can be typically interpreted as marginal changes in the dependent

variable due to shifts in one of the explanatory variables. In this regard, spatial models

require additional steps because we explicitly impose dependence among observations, im-

plying that the partial derivatives of the dependent variable in region i with respect to an

explanatory variable in region j are potentially non-zero and therefore cause feedback ef-

fects. Calculating average direct, indirect (i.e. spillover) and total impacts was proposed as

a solution to this issue (LeSage and Pace 2009): First, transforming Equation 3.1 (without

loss of generality, the same derivation holds for Equation 3.2) to

yt = (In − ρW )−1(Xtβ +WXtθ + ξt + ϵt), (3.3)

we derive n2 partial derivatives of a particular explanatory variable k as

∂yi
∂xjk

= Sk(W )ij = (In − ρW )−1(Inβk +W θk)ij , (3.4)

where infinite feedback effects are captured through the spatial multiplier (In − ρW )−1.

The impact matrix is then summarised by calculating the average total effect as the average

over all entries in Sk(W )ij , the average direct effect as the average when only considering

its main diagonal, and the average indirect effect as the difference between the two. An

interpretation of average direct effects is then given by the average response of the dependent

to independent variables over the sample of observations and hence similar to regression

coefficients from classical linear models. The average spillover can be interpreted as the

cumulative average response of a region’s dependent variable to a marginal change in an

explanatory characteristic across all other regions.

3.4.2 Data

We compiled a balanced panel data set, covering 5,262 Brazilian municipalities over the

period 2005-2020. Data were collected from various sources and, if necessary, aggregated

to the municipality level. Municipalities, the lowest administrative divisions in Brazil, are
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occasionally split or merged and hence their total number varies. In order to keep a balanced

panel with a constant number of spatial observations, we followed previous research (Resende

et al. 2016) and only considered municipalities with unchanged geographical extent over the

sample period. An overview of the variables used in this study is presented in Table B1.

The dependent variable in the growth models was the five-year average annual growth

rate of GDP per capita, which was computed from yearly per capita GDP in BRL at

current purchasing power parities as reported by the Brazilian Institute for Geography and

Statistics, IBGE (2023a; 2023b). In the last year of the panel, 2015, this measure therefore

comprises economic growth between 2015 and 2020. We selected five-year growth windows

as a suitable measure for mid-term economic effects (Caselli et al. 1996). We were aware

that other studies emphasise poverty and distributional effects of mining (Arellano-Yanguas

2011; Loayza and Rigolini 2016). However, we needed to resort to GDP growth in our study,

because alternative socioeconomic indicators that would allow for a broader understanding

of human well-being are difficult to obtain for this level of geographical detail, especially for a

yearly panel. GDP per capita therefore served as a key indicator for economic development,

despite its limitations such as only covering market transactions and not describing income

distribution.

Considered municipalities varied in size from 3.57 km2 to 159,533 km2 (mean = 1,541

km2, sd = 5,683 km2). In the forest loss models, we used relative and absolute measures for

the dependent variable, i.e. the decrease in natural forest formation (a) as annual change

relative to municipality size in ha per km2 and (b) as annual change in absolute ha. The data

was calculated from municipality-level land cover statistics as provided by the MapBiomas

project (MapBiomas 2023). In contrast to the five-year windows used in the economic growth

specification, our focus shifted to annual changes in forest cover. This decision stemmed from

our assumption that no adjustments for business cycles were necessary, given deforestation

occurring at immediate events without significant recovery periods.

The essential municipality characteristic for this study was the presence of mining ac-

tivities. Mining entered the models as binary indicators for the presence of industrial and

garimpo mining within a municipality in a certain year. Detailed yearly geospatial data on

Brazilian land area covered by mining was taken from MapBiomas (2023). We transformed

their continuous metric (ha per municipality) to a binary variable for simpler interpretation

of effects. Results were robust with only minor exceptions against an alternative specifica-

tion using mining area in ha as an indicator for the actual mining intensity (see Figures B5

and B6). Instead of land cover information about mining, the CFEM tax would have been

another indicator for active mining activities. However, we refrained from using the CFEM

as an explanatory variable, as the tax income directly enters municipality GDP, i.e. the

dependent variable, creating identification issues in the econometric model.

We considered land use change dynamics as control variables in all models. Using satel-

lite data on the conversion of land, e.g. from natural forest formation to pasture or from

grassland to agriculture, is an efficient approach for observing economic activity and en-

vironmental transformation at the same time. Our data was obtained from MapBiomas

(2023), providing yearly land transition information from 30 m resolution satellite images

aggregated to the level of Brazilian municipalities. We utilised land cover classifications at

the second sub-categorical level and considered forest formation and forest plantation for

the case of forest, grassland as non-forest natural formation, and agriculture and pasture for
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farming. Other categories such as wetlands, non-vegetated areas and bodies of water were

omitted since they had minor relevance for our analysis. In order to be consistent with the

five-year GDP growth horizon, we computed the average change in ha over five years. Land

use change from any category to forest formation was not considered as a covariate, because

it marks a transformation that is only viable over a longer time horizon.

Initial land cover was considered as a proxy for the land cover conditions at the beginning

of either a window of GDP growth or a one-year forest loss period. We again used data

from MapBiomas (2023). In order to reflect the variation in municipality area, this variable

entered the models as shares of natural forest, forest plantation, grassland, agriculture and

pasture relative to the total municipality area.

The remaining covariates were motivated by economic growth theory (see the respective

literature below), and by following a meta-analysis for the case of the forest loss models

(Busch and Ferretti-Gallon 2017). We considered initial income in terms of per capita GDP

in the initial year of a growth window as a proxy for physical capital, which is a major

determinant of economic growth in the neoclassical growth framework (Solow 1956). A

negative relationship between initial stock of physical capital and economic growth, which is

explained by diminishing returns to capital accumulation, is a well-established stylised fact

in the empirical literature known as the convergence hypothesis. In addition, a number of

studies show that the convergence hypothesis holds for direct impacts in spatial econometric

growth frameworks, while spillover effects from the flows of capital, goods, knowledge and

people between regions are shown to be positive, implying that poorer regions benefit from

having highly capitalised neighbours (López-Bazo et al. 2004).

Endogenous growth theory highlights the role of human capital as a key driver of inno-

vation processes such as technological change (Lucas 1988; Romer 1990). However, whether

indirect effects are positive or negative is uncertain, because positive economic effects from

knowledge spillover and brain drain channels may counteract each other. We proxied human

capital using the FIRJAN education index (FIRJAN 2018), an index for Brazilian munici-

palities on a scale from 0 (worst) to 1 (best) measuring both schooling coverage and quality.

The education index was only available from 2005, constraining our sample to this starting

year.

Population growth was another component taken from the neoclassical growth frame-

work. Following this theory, a positive impact of population growth would hold for absolute

income growth at the national scale, but not for the growth of per capita income due to cap-

ital dilution. Therefore, unless higher output exceeds population growth, we would expect a

negative effect. For subnational entities, this relationship is unclear, because one part of the

population dynamics are migration patterns, which may vary across scale levels (Resende

et al. 2016). We obtained population counts per municipality from the IBGE and computed

population growth again at five-year average rates. Population counts for 2007 and 2010

were interpolated due to missing data.

In line with numerous other studies, we used population density as a proxy for ag-

glomeration externalities (Resende et al. 2016). Population agglomeration effects have been

considered in the economic geography literature. Denser populated (i.e. urban) regions

are associated with positive effects on productivity growth, because they show higher rates

of technological progress (Fingleton 2001). However, this relationship may not hold for
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poor districts in low and middle income countries, where strong urbanisation is caused by

extensive population growth without having any substantial effects on labour productivity.

We followed previous research (LeSage and Fischer 2008) and included the gross value

added (GVA) in the agriculture, industry and service sectors as control variables in order

to proxy the industrial structure of municipalities.

The forest loss regressions followed a similar structure as the growth regression, with

small adjustments. Instead of initial income, population growth and density, human capital

and the sectoral mix variables, we directly used the five-year average annual economic growth

rates as a proxy for economic activity. The empirical literature is inconclusive regarding the

direction of the effect that income may have on forest cover (Busch and Ferretti-Gallon

2017), yet this proxy subsumes a set of deforestation drivers that are related to any other

anthropogenic activity besides the mining and other land use change effects. Forest cover

change accounts were only included in the GDP growth models, as they effectively define

the dependent variables in the forest loss models.

Final control variables for economic growth and forest loss were the biophysical charac-

teristics precipitation and elevation.

The data was compiled using the dplyr (Wickham et al. 2021), tidyr (Wickham 2021),

readxl (Wickham and Bryan 2019), stringi (Gagolewski 2021), sf (Pebesma 2018), raster

(Hijmans 2021), geobr (Pereira and Goncalves 2022), exactextractr (Baston 2022) and ele-

vatr (Hollister et al. 2021) R packages (R Core Team 2024). Code and data for the complete

reproducibility of the results are provided at https://doi.org/10.5281/zenodo.11634331.

https://doi.org/10.5281/zenodo.11634331
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Chapter 4

EU consumption’s hidden link

to global deforestation caused

by mining

Abstract: The integration of metals and minerals into global supply chains leads to

mining impacts that manifest far from the location of final consumption. To address

these distant impacts, new legal frameworks are emerging that require companies to

exercise due diligence across their entire supply chains. However, accurately quantify-

ing local mining impacts and tracing them from production to consumption remains

challenging. This study examines global flows of forest loss within mine sites from 2001

to 2019, with a focus on final demand in the European Union. By integrating satellite

imagery with a multi-region input-output framework, we find that 12% of global forest

loss caused by mining is linked to EU consumption, with 89% of these impacts occur-

ring outside EU borders. The study identifies variations in impact intensities across

global mining areas, commodities, and European industry sectors, offering actionable

strategies and highlighting challenges for responsible material sourcing in consumer and

producer regions.

4.1 Introduction

Global demand for mined materials has reached unprecedented levels and continues to rise,

driven by increasing affluence, extensive infrastructure development, rapid urbanisation, and

the shift towards renewable energy sources (JRC 2023; UN IRP 2024). While coal mining

remains the cornerstone of energy systems in many regions, a substantial increase in the

extraction of metals and minerals critical for the energy transition is inevitable (Ali et al.

2017; Sovacool et al. 2020; Xu et al. 2020a). For instance, constructing an electric vehicle

requires six times more minerals than a conventional car, and building an onshore wind

power plant needs nine times the mineral resources compared to a gas-fired power plant

This chapter was co-authored with Stefan Giljum, Victor Maus, Laura Sonter, and Manfred Lenzen.
The research was supported by the European Commission under the ERC Consolidator Grant FINEPRINT
(Grant No. 725525) and the Austrian Federal Ministry of Education, Science and Research through the
Marietta Blau Grant (MPC-2022-02358), administered by the OeAD-GmbH.
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(IEA 2021). Considering the adverse impacts of mining, much needed technological solu-

tions to decarbonise industrialised societies therefore paradoxically risk endangering natural

ecosystems (Sonter et al. 2018; Sonter et al. 2020; Luckeneder et al. 2021; Luderer et al.

2019) and contribute to climate change (Azadi et al. 2020), if no adequate steps towards

more responsible mining practices are taken (Ali et al. 2017; Sonter et al. 2023; Azadi et al.

2020).

Metals and minerals enter global supply chains and end up in industrial production and

final consumption distant from extraction sites. Many countries, including those in the

European Union (EU), heavily rely on these resource imports. For instance, EU’s import

reliance ranges from 60% for nickel, zinc and aluminium to over 70% for iron ore, cobalt and

manganese and nearly 100% for platinum (European Commission 2020b). This dependency

raises concerns about the reliable and unhindered access to critical raw materials (Hool

et al. 2023), as well as the human rights violations and environmental damage associated

with extraction elsewhere (Wiedmann and Lenzen 2018). To secure mineral resources while

safeguarding human rights and achieving global environmental goals, comprehensive initia-

tives and legal frameworks are essential. These should address social and environmental

risks throughout the entire supply chain, incorporating scope-3 reporting and stringent law

enforcement to assess, mitigate and disclose impacts effectively.

To promote responsible practices among EU companies throughout their supply chains,

the European Council achieved consensus on the Corporate Sustainability Due Diligence

Directive (CSDDD) in March 2024. This directive is part of EU’s “Green New Deal” and

a broader strategy to address the impacts and opportunities within supply chains, comple-

menting other initiatives such as the Batteries Regulation (European Parliament 2023b),

the Corporate Sustainability Reporting Directive (European Parliament 2022), and the reg-

ulation on deforestation-free products (European Parliament 2023a). The CSDDD requires

companies to identify actual and potential adverse impacts in their supply chains and to

apply due diligence in order to prevent these impacts (European Commission 2022). The

directive is crucial for material sourcing, covering supply chains for minerals that have pre-

viously been excluded from existing or proposed EU due diligence instruments, such as

the Conflict Minerals Regulation (European Parliament 2017). Additionally, it aligns with

various emerging global disclosure frameworks and standards with similar objectives, includ-

ing those by the OECD (2023) and the Taskforce on Nature-related Financial Disclosures

(TNFD 2023).

However, traceability remains a challenge for all supply chain initiatives, particularly

for mined materials. Information on mining-related environmental impacts embodied in

European imports is currently almost entirely missing. First, there is a significant knowledge

gap regarding the quantification of local environmental impacts that the extraction of these

materials causes. Only recently, studies have started to systematically assess the extent to

which mining contributes to deforestation (Ladewig et al. 2024; Giljum et al. 2022; Sonter et

al. 2017), water scarcity (Meißner 2021) and biodiversity loss (Cabernard and Pfister 2022).

Second, policymakers, companies and researchers have encountered difficulties in tracing

these impacts along global trade networks. While progress has been made with agricultural

supply chains regarding the spatial and sectoral resolution of global footprint assessments

(Bruckner et al. 2019; Escobar et al. 2020; zu Ermgassen et al. 2020), many supply chains
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of non-renewable resources remain opaque and nontransparent, providing a key barrier for

change.

To address these existing research gaps, we choose forest loss caused by mining as the

environmental impact of interest, as deforestation is a major driver of other negative im-

pacts, such as biodiversity loss (Gibson et al. 2011). We assess forest loss within land area

occupied by mining and subsequently connect this information to a global trade model. It

is well-explored that agriculture is the dominant driver of deforestation (Curtis et al. 2018;

Pendrill et al. 2019; Pendrill et al. 2022), and direct deforestation impacts from mining are

comparatively smaller (Giljum et al. 2022). However, three quarters of agricultural expan-

sion into forested areas are driven by domestic demand within producer countries (Pendrill

et al. 2019), while mined materials are predominantly embodied in global supply chains

(Wiedmann and Lenzen 2018). Moreover, mining has increasingly come into focus as an im-

portant driver of deforestation in local contexts, with substantial indirect effects surrounding

extraction sites (Pendrill et al. 2022; Sonter et al. 2017; Giljum et al. 2022; Ladewig et al.

2024). While the EU has implemented biodiversity and forest strategies to combat defor-

estation and forest degradation (European Commission 2020a; European Commission 2021),

these measures primarily focus on intra-European environmental issues. Only the regula-

tion on deforestation-free products (European Parliament 2023a) explicitly addresses the

origins of imported products, but it does not consider metals or minerals. Given the likely

heterogeneity of mining impacts on forests across different regions and the EU’s reliance on

specific areas for its supply chains, companies, policymakers, and consumers would benefit

greatly from better understanding these impacts to promote more sustainable production

and consumption patterns. As satellite imagery provides robust evidence of forest cover

change, forest loss caused by mining is an excellent case study for a concrete, quantifiable

exploration of the environmental impacts embedded in the EU’s final demand for products

and services.

4.2 Results

By integrating high-resolution satellite imagery depicting forest cover (Hansen et al. 2013)

with delineations of mining areas (Maus et al. 2022), we derived annual records of forest loss

caused by mining across extraction sites worldwide from 2001 to 2019. These records com-

prise all cleared areas within the boundaries of mining operations, encompassing open cuts,

tailings dams, waste rock dumps, water ponds, and processing plants as of 2019 (Maus et al.

2022). It is important to note that our investigation focuses on the immediate, or ‘direct’,

repercussions of forest loss, specifically referring to the deforestation within the confines of

mining areas resulting from the establishment or expansion of extraction sites, as well as

associated on-site infrastructure and processing facilities. Our analysis therefore portrays a

conservative estimate of the total impact, as mining activities have been empirically linked

to considerable deforestation in the broader vicinity through ‘indirect’ pathways, such as the

development of transportation and energy infrastructure, as well as population pull effects

(Sonter et al. 2017; Giljum et al. 2022; Ladewig et al. 2024).

Accumulated 2001-2019 global forest loss caused by mining amounted to 13,224 km2,

which is depicted in Figure 4.1 at 2 degrees resolution (approximately 220 km at the equator),

revealing a pervasive occurrence of forest loss caused by mining across nearly all regions
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worldwide. While 92% of the mapped tiles show forest loss of less than 10 km2, regions

with exceptionally high rates, ranging up to 767 km2, were identified. These hotspots

are located in South America (e.g., Figure 4.1A), Ghana (Figure 4.1B), Russia, Myanmar,

and Indonesia (Figure 4.1C), as well as in Canada, the United States, and Australia (see

Figure C2 in Appendix C).

Figure 4.1: Accumulated 2001-2019 forest loss caused by mining at 2 degrees resolution using a Robinson
map projection. Areas were obtained by intersecting mining area polygons (Maus et al. 2022) and forest
cover maps from the Global Forest Change (GFC) dataset (Hansen et al. 2013). Zoom-in maps highlight
mining areas (white) in the Brazilian Amazon (A, 750 km2 forest loss caused by mining within shown mining
areas, mostly artisanal gold mining), Southern Ghana (B, 499 km2, other non-ferrous ores, bauxite and gold
mining), and Indonesian Borneo (C, 2,467 km2, mostly coal mining).

4.2.1 Forest loss intensities vary across countries and materials

Utilising mine-specific information on historical commodity production sourced from the

S&P Capital IQ Pro Metals and Mining database (S&P 2024), we estimated forest loss

within mining areas driven by the extraction of specific commodities. In case of coupled

production (different metals contained in the crude ore), we applied commodity price-weights

to allocate forest loss between metals (see Section 4.4.1). We aggregated this information
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across a range of key commodities, i.e. bauxite (aluminium ore), hard coal, lignite and peat,

copper ores, gold ores, iron ores, lead/zinc/silver ores, nickel ores, other non-ferrous ores,

tin ores, and uranium ores.

Global forest loss caused by mining, as illustrated in Figure 4.2B, mirrors the notable

upsurge in metals and minerals extraction depicted in Figure 4.2A. Over the span from

2001 to 2012, there was a substantial acceleration in material extraction of the 11 analysed

commodity groups, escalating from 9.3 bn tonnes to 15.2 bn tonnes. Correspondingly,

mining-related forest loss exhibited a marked increase from 237 km2 in 2001 to 1,234 km2

in 2012. Post-2012, forest loss rates appeared to stabilise, maintaining a yearly average

of approximately 856 km2, while extraction of the selected commodities experienced only

marginal growth. Nonetheless, it is important to note that dynamics across commodities

(Figure C3) and countries varied significantly, with notable outliers at the upper end (Figures

C5 and C6).

Figure 4.2: Global 2001-2019 extraction of selected metals and coal in billion tonnes (Lenzen et al. 2022;
Lenzen et al. 2017) (A). Yearly forest loss (in km2) within mining polygons by commodity (B). Direct
intensities in m2 of forest loss per 1,000 USD output by primary extraction sector (C; Points denote 2001-
2019 country average, red points indicate major producers together responsible for more than 70% of global
production per commodity, n is the number of countries observed where respective mining activities were
recorded. Outliers for Belgian hard coal were omitted.).

The largest shares of accumulated forest loss caused by mining during the period from

2001 to 2019 can be attributed to the extraction of gold ores (43%) and various forms of

coal (hard coal, lignite and peat; 26%), followed by the aggregated group of ”other non-

ferrous ores” (6%), bauxite (5%), and iron ore (4%) (Figure C4). This forest loss occurred

predominantly in Indonesia, Brazil and other South American countries, Australia, Canada,
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Russia, and the United States. Approximately 10% of the observed forest loss could not be

conclusively linked to any of the key commodities.

It is important to understand the magnitude of forest loss impacts relative to the scale

of each country’s respective extraction sectors. Direct forest loss intensities, denoting the

spatial extent of forest loss in relation to gross production of specific primary extraction

sectors, exhibit significant variation across commodities and global regions. The boxplots

depicted in Figure 4.2C illustrate that country-specific coefficients span a broad spectrum

for all commodities. The highest median intensities were observed for gold ores (median =

13.3 m2 per 1,000 USD, mean = 3,7, sd = 17,587), followed by bauxite (1.7, 14.6, 22.3), tin

(1.1, 4.6, 7.2), and nickel ores (0.8, 68.1, 278), while the smallest average intensities were

associated with copper ores (0.01, 1.5, 9.1). While 90% of intensities fell below 43 m2 per

1,000 USD output within the respective sector, outliers were notable (see Figures C5-C8

in Appendix C for more detailed depiction of yearly forest loss and gross production). In

Venezuela, gold ores were, for instance, associated with 35 ha, and lead/zinc/silver ores with

1.8 ha forest loss per 1,000 USD in 2012, respectively, and Guinean iron ore displayed values

of 1.4 ha per 1,000 USD in 2018.

Although some of these average intensities at the country level involve minor mining

producers, Figure 4.2C also reveals that major producing countries (represented by red

dots, constituting 70% of global production per commodity) span various intensity levels.

For instance, among the top three bauxite producers – Australia, China, and Guinea (USGS

2024) – direct forest loss intensities were 24.6, 0.03, and 1.2 m2 per 1,000 USD, respectively.

4.2.2 EU final demand causes 12% of global forest loss within mine

sites

Raw materials, especially metallic minerals, integrate into international trade networks and

global supply chains. By linking the data on mining-related forest loss outlined above to

the global multi-region input output (MRIO) model GLORIA (Lenzen et al. 2017; Lenzen

et al. 2022), we obtained footprint-type indicators to portray local environmental impacts

at extraction sites that are embodied in the final demand (mainly private and government

consumption, and capital formation) of products and services elsewhere. In our case, we

derived forest loss occurring at extraction sites that is incorporated in consumption across

various world regions and industry sectors (see Section 4.4.2, Figure C9). In total, 1,416

km2 of forest loss within mining areas were attributable to the final demand in the EU

between 2001 and 2019. Figures 4.3A and 4.3B show that 89% of this impact occurred

outside the EU, primarily associated with material flows originating from the Americas (626

km2), Indonesia (227 km2), Russia (159 km2), Ghana (75 km2), and Australia (73 km2).

The EU ranked second in terms of consumption-driven forest loss, following China (2,058

km2) and ahead of the United States (1,332 km2) and Japan (753 km2). EU demand thus

contributed to 12% of global forest loss caused by mining between 2001 and 2019. Table C1

in Appendix C shows a full list of countries and per capita values.

Variations existed concerning the materials associated with forest loss impacts attributed

to EU consumption. As illustrated in Figure 4.3B, the EU’s mining-related forest loss

footprint in Indonesia and Russia was predominantly linked to gold ores (102 km2 and 72

km2, respectively) and coal (114 km2 and 56 km2), while Brazilian forest loss was mostly
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Figure 4.3: Global flows from local occurrence of forest loss caused by mining (production perspective)
to where products and services associated with this forest loss are consumed (consumption/footprint per-
spective). Colours highlight EU-27 consumption (A). Mining-related forest loss associated with EU-27
consumption by impact region and mined commodity (B). Mining-related forest loss associated with EU-27
consumption by EU-27 industry sector and impact region (C).

due to gold ores (165 km2) and smaller yet considerable portions of bauxite (24 km2) and

iron ores (18 km2). Gold extraction also dominated forest loss dynamics in Peru (66 km2),

Venezuela (11 km2), and Cote d’Ivoire (6 km2). Bauxite emerged as a significant factor in

Ghana (49 km2) and Australia (43 km2). In Guinea (5 km2) and Sierra Leone (3 km2),

mining-related forest loss linked to EU demand was almost entirely associated with bauxite.

Copper-related forest loss occurred primarily in Zambia and the Democratic Republic of

Congo (11 km2, respectively). Apart from Indonesia, coal embodied in EU consumption

(mostly as a source of energy and as an ingredient in steel production) was a prominent factor

of forest loss at extraction sites in the USA (68 km2), Russia (56 km2), and Colombia (14

km2), but mostly within the EU itself. Almost two thirds of the 153 km2 forest loss related

to extraction and consumption inside the EU were due to the extraction of coal, particularly

in Germany (66 km2), Romania and Poland (11 km2, respectively). EU consumption of

nickel – essential for enhancing battery performance, longevity and energy density (IEA

2021) – notably contributed to forest loss in Indonesia (6.7 km2), with subsequent impacts
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observed in the EU (5.9 km2), Canada (3.5 km2) and Australia (2.9 km2), as well as the

‘Rest of Africa’ (XAF, 3 km2) and ‘Rest of Americas’ (XAM, 2.9 km2) regions.

One quarter of the EU’s forest loss footprint was attributed to just three industrial sec-

tors: automotive manufacturing, machinery and equipment production, and civil engineering

construction, i.e. a subset of the construction industry focused on large-scale infrastructure

projects such as the construction of roads, dams and railways. The GLORIA dataset pro-

vides a detailed sectoral breakdown encompassing 120 distinct industry sectors, facilitating

a thorough analysis of impacts within national economies. Figure 4.3C illustrates forest loss

embodied in EU’s final demand, categorised by industry sector. Among these sectors, the

automotive industry in the EU had the most significant impact, accounting for 155 km2.

19.8% of this area was traced to Brazil, 18.2% to Indonesia, and 17.5% to the ‘Rest of Amer-

icas’ aggregate region. Notably, only 3.5% of the mining-related forest loss impact linked to

the EU’s automotive industry occurred within the EU itself.

The locations of forest loss associated with the final demand across EU’s industrial sectors

generally showed a proportional relationship to overall mining-related forest loss levels (see

Figure C4), with some notable exceptions. For example, the electric power generation sector

had a larger forest loss impact within the EU and in the USA, likely due to the use of coal

for energy production, and refined petroleum products left a substantial footprint in Russia.

Comparing the sectoral distribution of EU’s footprint with other major material-

consuming economies reveals considerable regional disparities. For instance, Chinese con-

sumption predominates the forest loss footprint in the construction, machinery, and electrical

equipment sectors (Figure C10) and the United States exhibits the largest footprint in elec-

tric power generation, notably fuelled by domestically mined coal, as well as in government,

security, and defense sectors (Figure C11). Japan’s footprint is disproportionately large

in the professional, scientific, and technical services sector. Conversely, the EU footprint

is relatively modest in the construction sectors, electric power generation, and electrical

equipment (Figure C12).

4.3 Discussion

In recent years, supply chain initiatives have gained prominence due to the increasing aware-

ness that a globalised economy can mask the local environmental and social consequences

of raw material extraction behind international trade flows. However, our understanding

of the effects of mining and the quantification of these impacts embodied in traded goods

remains limited, primarily due to the complexity and opacity of these supply chains. Here,

we present conclusions and actionable strategies to minimise negative impacts derived from

our findings.

4.3.1 EU’s pathways to environmentally responsible sourcing

The varying intensities of forest loss underscore the importance of considering such hetero-

geneity in formulating effective mining and supply chain management strategies. This study

offers insights into sourcing alternatives with lower deforestation impacts, aligning with legal

frameworks like the EU CSDDD. By identifying hotspots of supplier impacts and variations

in forest loss intensities, our findings can help prioritise areas for intensified environmental
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impact assessment and inform EU stakeholders’ investment strategies. It thereby facilitates

the integration of environmental considerations with economic and legal decision factors,

ensuring that suppliers are held accountable for their environmental impacts. We illustrate

potential alternatives in selecting supplier countries in Figure 4.4, where we present forest

loss caused by mining embodied in EU consumption and associated forest loss intensities

relative to the production capacities of extracting countries. Ideally, the EU would source

from countries located in the top left quadrant of each panel, indicating high production

capacities at low forest loss intensities.

Figure 4.4: Forest loss caused by mining embodied in EU-27 consumption by commodity and impact region.
Dot sizes illustrate the scale of forest loss, x-axis indicates 2001-2019 country average direct intensity (m2

per 1,000 USD) and y-axis indicates 2001-2019 accumulated extraction (bn tonnes) in each country.

Our findings also support private sector and institutional decision-making by identifying

industrial sectors within the EU with significant forest loss impacts. The EU’s automotive

industry is a key player for change and deserves prioritised attention. While decarbonisation

will reduce coal-related impacts, the rising demand for electric vehicles will increase the

extraction of other materials (Xu et al. 2020a; IEA 2021). Consequently, due diligence

must be exercised by stakeholders, particularly within the automotive sector. Anticipating

these impacts can also facilitate a more progressive discussion. Beyond responsible material

sourcing and mitigating related environmental and social impacts, the sector and modes

of living require a substantial transformation, including rethinking transport and logistics

systems towards public transport and sharing concepts (Bärnthaler et al. 2023).

To minimise further forest loss, the EU could pursue several pathways. One involves

shifting to suppliers with lower deforestation intensity. For example, prioritising Chinese

coal over Indonesian sources could reduce deforestation impacts. A more sustainable sce-
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nario would not only shift the origin of materials but also seek to avoid or replace high-impact

materials altogether. In the context of the energy transition, this would mean relying on

technologies that do not depend on coal. However, this approach must also consider the

increased demand for other materials that also have high deforestation intensities, such as

nickel. Another pathway involves reducing total material consumption in specific industries,

for instance through ambitious recycling strategies or alternative transportation methods.

The actual dynamics of these approaches are intricate, influenced by factors such as geopoli-

tics, uncertainty about future technologies and material demand, mining feasibility, and the

long lifespan of mining operations. Given these challenges, interdisciplinary collaboration is

essential to steer a globally fair and just energy transition. To support this effort, future

research must systematically assess material demand and its associated socio-environmental

impacts and integrate this information into modelled scenarios.

4.3.2 Implications for material suppliers

A rigorous implementation of supply chain initiatives such as the CSDDD will significantly

impact commodity producers. Cautious sourcing decisions could incentivise national gov-

ernments of producer countries to establish appropriate socio-ecological legal and economic

frameworks, ensuring they remain significant trade partners for the EU. This externalisa-

tion of the EU’s standards beyond its jurisdiction through market mechanisms has been

referred to as the “Brussels Effect” (Bradford 2015). For instance, Figure 4.4 suggests that

the Australian bauxite industry would need to better manage its environmental impacts to

comply more effectively with EU standards. Failure to do so could result in corporations

operating in or exporting to the EU being forced to shift their material sourcing to other

bauxite suppliers, such as China or Indonesia. Consequently, to remain competitive in the

EU market, supplier countries might need to either improve their environmental impact

mitigation strategies or specialise in the production of minerals with lower environmen-

tal impacts. However, especially regarding intermediate traded products, the pressure to

adopt more sustainable and responsible procurement would be most effective only if actors

disclosed their sourcing information. Moreover, the EU might miss the intended outcome

if producers turned their attention to alternative markets (Vasconcelos et al. 2024). The

effectiveness of supply chain initiatives therefore also depends on the balance between in-

ternational competition and cooperation. More sustainable outcomes can only be achieved

with the development of transparent and comprehensible supply chains, a goal that remains

currently unmet.

Other important aspects are that commodity production has increasingly shifted towards

the Global South, and that coal remains the most important energy source globally for elec-

tricity generation (IEA 2023). Some regions depend heavily on mining activities, providing

employment and income for millions of people, while at the same time causing social and

environmental disruption (Bebbington et al. 2008). This structural dependence means that

any significant changes to the industry can have profound socioeconomic implications for

these communities. As evidenced in palm oil debates, countries have been critical of EU

supply chain regulations, arguing that such regulations amount to green protectionism and

unfairly push them out of the EU market (Kinseng et al. 2023). Therefore, increasing sup-

port by the EU to resource extraction countries in the Global South is necessary to apply
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better management strategies that help mitigate mining impacts. The EU will need to

work closely with various stakeholders in mining countries, including civil society, to jointly

develop solutions for adhering to new regulations.

4.3.3 Limitations to supply-chain-wide forest protection plans

In 2008, the European Commission issued the ‘Communication on Deforestation’, proposing

ambitious objectives: halting global forest cover loss by 2030 and reducing gross tropical de-

forestation by at least half by 2020 (European Commission 2008). Our findings highlight the

necessity for policies that improve the accountability of EU companies for mining-related

environmental impacts occurring in their supply chains outside the EU. These issues are

not addressed by the EU’s biodiversity (European Commission 2020a) and forest strategies

(European Commission 2021), nor by the EU regulation on deforestation-free commodities

and products (’Deforestation Regulation’, European Parliament 2023a), which, despite its

comprehensive supply chain perspective, does not cover forest loss caused by abiotic mate-

rial extraction. We thus argue that the implementation of the CSDDD presents a crucial

opportunity to complement the EU Deforestation Regulation. This would address the en-

vironmental impacts of mining, such as forest loss, beyond European borders, enabling the

EU to take responsibility for extraction-related impacts driven by its consumption.

However, there are limitations to consider. First, our analysis focused solely on forest loss,

but decisions aimed at minimising mining-related forest loss may entail trade-offs with other

impacts. For instance, shifting bauxite production from Australia, where forest loss intensity

is high and contributes significantly to the EU’s deforestation footprint, to China, where

deforestation impacts are lower, might overlook other socio-environmental concerns, such as

soil pollution and associated health risks (Li et al. 2014). Similarly, in Peru and Chile, where

copper ores show relatively low forest loss intensities, copper extraction occurs in desert

ecosystems with different environmental priorities, including significant water and energy

demands. Understanding these complexities is crucial for informed policy and corporate

decisions. While intensity metrics provide initial indicators of risk, local contextual factors

warrant consideration in comprehensive impact assessments.

Second, there are fundamental limitations to national supply chain policies. Even with

the optimal implementation of the EU’s CSDDD and biodiversity and forest strategies, only

about 12% of global forest loss caused by mining could have been mitigated. This indicates

that the EU alone cannot reverse global forest loss trends and underscores the imperative

for international action and cooperation to achieve global zero-deforestation targets despite

many challenges (Vasconcelos et al. 2024). Consistent implementation of policies like the

CSDDD can inspire other consumer regions to adopt similar measures, potentially steering

the global economy towards greater sustainability. This will require political will and may

incur higher costs.

In conclusion, this study successfully elucidated the mining-related forest loss embed-

ded within the supply chains of EU consumption, but it is crucial to stress that it has

addressed only one impact dimension. As the demand for mineral resources continues to

grow, the development of methods and assessments that account for the full spectrum of

embodied mining impacts will become increasingly important. Future research and policy

must therefore advance beyond single-issue analyses, adopting a comprehensive approach
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that integrates environmental, social, and economic factors. The findings of this study place

particular responsibilities on the Global North and emerging economies such as China and

India. Their collective efforts will be instrumental in establishing sustainable global supply

chains and ensuring a more responsible use of the planet’s resources.

4.4 Methods

We calculated forest loss caused by mining globally at the mine site level for the period 2001-

2019 and connected this information to an environmentally-extended multi-region input-

output (EE-MRIO) framework. An overview of the workflow is shown in Figure C1 in

Appendix C.

4.4.1 Measuring forest loss caused by mining

Data: We measured deforestation caused by mining by overlaying spatial data on mining

areas and annual forest cover loss. By integrating this information with data on mining

operations, we were able to identify specific commodities and production activities associated

with forest loss.

We used the global mine area dataset by Maus et al. (2022) as an indicator for land area

covered by mining. The dataset is based on visual interpretation of satellite imagery and

features 44,929 spatial polygons, adding up to 101,583 km2 of land area used by large-scale

and artisanal and small-scale mining infrastructure, such as open cuts, tailings dams, waste

rock dumps, water ponds, and processing plants.

Forest loss was obtained from the Global Forest Change (GFC) dataset (Hansen et

al. 2013), which provides yearly information on tree cover and tree loss at 1-arcsecond

resolution (approximately 30 by 30 m at the equator) on a global scale. We classified any

pixel with detected tree cover loss and an initial tree cover greater than 25% as deforestation,

consistent with established literature (Pendrill et al. 2022). We did not distinguish between

partial and complete canopy removal, as mining activities typically result in extensive surface

modification and the complete removal of existing vegetation.

To identify the commodities and production linked to deforestation, we applied the

hcluster algorithm (Müllner 2013) to cluster mining area polygons with the coordinates

of mines from the S&P Capital IQ Pro Metals and Mining database (S&P 2024). The

algorithm clusters geographically close spatial features, connecting mining areas (poly-

gons) with the S&P database coordinates (points). The clusters were defined using a

single parameter of the hcluster algorithm, the maximum tree depth, which was set at

10 km to account for the mining infrastructure spread over the regions, as indicated

in the literature (Maus et al. 2022; Werner et al. 2020). This approach often links

multiple commodities to a single mining area, reflecting the fact that many sites extract

several commodities (Nassar et al. 2015) and multiple S&P properties can be part of a sin-

gle cluster. Consequently, the same deforestation area may be linked to several commodities.

Geospatial assessment and allocation procedure: We initially intersected the forest

cover loss data at 1-arcsecond resolution with the mining polygons to compute the annual

forest loss within each mining polygon between 2001 and 2019. The year 2019 was selected
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as the endpoint because the mining polygons dataset is derived from 2019 cloudless mo-

saic satellite imagery. It is reasonable to assume that the forest area cleared within the

2019 mining extents was directly attributed to mining activities such as mine expansion or

infrastructure development.

Subsequently, we followed the results from the hcluster algorithm to identify the specific

commodities associated with each mining area. To allocate forest loss areas to the respective

commodities, we tested four different allocation methods: equal shares, reported primary

commodities, extraction mass, and commodity prices. The allocation methods are sum-

marised in Figure C13. For this study, we employed the price-weighted allocation method

for forest loss accounts, with detailed results presented in Figure C17. However, a compar-

ison of allocation methods indicates that the forest loss accounts and related findings are

robust regardless of the allocation method chosen (see Figure C14-Figure C16).

4.4.2 Environmentally-extended multi-region input output analysis

The forest loss accounts were then integrated in an environmentally-extended multi-region

input output (EE-MRIO) framework. EE-MRIO models are extensively utilised to examine

a broad spectrum of environmental issues, including carbon emissions (Minx et al. 2009), raw

materials (Wiedmann et al. 2015), land use (Hubacek and Giljum 2003) and water resources

(Lutter et al. 2016) embodied in the production and consumption of goods and services.

These models facilitate the assessment of environmental impacts from both production and

consumption perspectives.

The production perspective attributes impacts to the regions and sectors where they

occur, whereas the consumption (or footprint) perspective attributes impacts to the final

consumption of products and services at the end of global supply chains. Consequently,

MRIO models provide a direct link between the impacts of metals and minerals extraction

around mine sites and the consumption of goods and services occurring elsewhere. Among

their numerous applications, MRIO analysis was recently employed to demonstrate global

biodiversity loss associated with mining-related land use (Cabernard and Pfister 2022).

Data: We used Release 057 of the GLORIA global environmentally-extended MRIO

database (Lenzen et al. 2022), constructed in the Global MRIO Lab (Lenzen et al. 2017).

It features 160 countries and 4 rest of the world accounts, each divided into 120 industry

sectors to describe the structure of the global economy. We harnessed the availability of

11 primary extraction sectors: bauxite (aluminium ore), copper ores, gold ores, iron ores,

lead/zinc/silver ores, nickel ores, other non-ferrous ores, tin ores, uranium ores, hard coal,

and lignite and peat.

Model: The EE-MRIO setting, based on a generalised version of the open IO model,

leverages the fundamental input-output balance, which states that the total output of an

economy is the sum of all intermediate and final consumption (Leontief 1941; Lenzen 2001;

Schaffartzik et al. 2014a). Let Z be an n× n matrix representing the intermediate demand

between n industry sectors, and let y be an n × 1 vector of the final demand for products

(or services) from n sectors. Thus, the total output xi of a sector i equals the sum of the

respective row entries
∑n

k=1 Zik plus yi.
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Additionally, let A be the n×n direct requirement matrix (or technology matrix ), where

the element Aij indicates the inputs required from industry i by industry j to produce one

unit of total output of sector j. From the relationships:

x = Zιn + y (4.1)

where ιn is a vector of size n consisting of ones, and

A =Zx̂−1 ⇒ Zιn = Ax (4.2)

where x̂ indicates a matrix diagonalising x, it follows that:

x =Ax+ y ⇒ x = (I −A)−1y = Ly (4.3)

where L is the total requirements matrix, or Leontief inverse, reflecting both direct and

indirect intermediate requirements of each sector to produce one unit of final demand for a

respective product or service.

Until now, the model and its components are purely described in monetary terms. How-

ever, in this study, we employ an environmentally extended version of the MRIO framework

(Kitzes 2013), requiring the addition of information on environmental inputs. Let e⊺ be

a 1 × n direct intensity vector of environmental inputs (e.g., tons of material, hectares of

land, cubic meters of water) associated with one monetary unit of output from each sector.

The environmental footprint f associated with the final demand for products and services

(consumption perspective) is then defined as:

f = e⊺L⊙ y (4.4)

where f i represents all the environmental inputs required by sector i to provide goods and

services to final consumers.

In this study, we investigate the environmental impact of forest loss attributable to the

production of metals and coal. Based on the forest loss accounts described in the previous

section, which we aggregated to the 11 domestic primary extraction sectors considered in

the GLORIA database, we constructed a direct intensity vector e⊺, which serves as an

“environmental extension” to our model. This vector denotes the area of forest loss per

monetary output for each specific metal and coal extraction sector featured in the MRIO

model, thereby representing the “forest loss intensities” associated with mining sectors

across different countries. The environmental extension, expressed in area per 1,000 USD,

is illustrated in Figure 4.2C and Figure C8. Further elaboration on the components used

for constructing e⊺ = forest loss (area)
total output (USD) can be found in Appendix C (Figure C5, Figure C7).

Limitations All models, including the EE-MRIO model applied in this study, are simplifica-

tions of the complex realities they aim to represent. These simplifications, while necessary

for managing the complexity of global economic structures, inherently introduce certain

limitations that must be acknowledged.

Primary limitations stem from the general assumptions of the MRIO framework (Kitzes

2013). These well-known assumptions include the treatment of economic sectors as homo-
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geneous entities with standardised products, maintaining constant input-output structures,

and simplifying environmental pressures. We are aware that such assumptions do not fully

capture the heterogeneity and non-linear dynamics present in real-world economic and envi-

ronmental interactions. Nonetheless, these model types have proven valuable for capturing

global trends and relationships.

Regarding the spatial resolution of forest loss accounts in relation to national data in

GLORIA, aggregating high-resolution forest loss data unavoidably sacrifices spatial detail,

which may impact result accuracy. The model operates under the assumption that subna-

tional forest loss patterns and trade flows align with national averages. Thereby, the model

is unable to consider subnational regions’ trade flows with other global regions, but inte-

grates them into national trade (Wiedmann and Lenzen 2018). This approach can obscure

important details, such as when resources from one region in country A are predominantly

consumed in country B, while the same resources from another region in country A – po-

tentially with different environmental impacts – are predominantly consumed in country

C.

These limitations need to be considered when interpreting the results of this study.

They highlight the necessity for further research to refine EE-MRIO models, particularly by

integrating high-resolution spatial data with subnational and international trade flows, and

accounting for regional and temporal variability in environmental impacts.
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Chapter 5

Conclusion

Mining activities have far-reaching impacts on the environment and societies. Over recent

decades, mining’s expansion has exemplified an extended social metabolism, in which global

resource extraction has not only accelerated but has also reached into previously undisturbed

and increasingly fragile territories. As demand continues to surge, new frontiers of extraction

such as deep sea mining and emerging technological innovations are likely to introduce new

challenges and risks.

This thesis has examined mining activities from the perspectives of ecological economics,

specifically addressing how the pressures of the global economy affect local ecosystems

and regional economies. By exploring three primary dimensions – the risks associated

with expanding mining into vulnerable ecosystems, the local impacts and spillover effects

of extraction, and the geographical disconnect between extraction and consumption –

it provides a comprehensive view across multiple spatial scales. But what overarching

conclusions emerge from the presented data and statistical exercises? A central takeaway

from this research is that integrating geographic data with advanced spatial statistics

and modelling provides a clearer understanding of the impacts of resource extraction,

enabling policymakers, businesses, and communities to better anticipate and manage future

extraction pressures. The findings highlight the importance of a global, integrated approach,

as local environmental and social impacts are directly tied to global consumption patterns,

trade systems, and inherent inequalities. This thesis thus presents approaches for linking

sub-national contexts with global perspectives, offering a roadmap to identify priority

areas for further work on local contexts of ecosystem vulnerabilities, social dynamics, and

pathways toward responsible resource governance.

The three main chapters of this dissertation, presented as standalone research articles,

each contribute from distinct angles. The first paper provides a broad, spatially explicit

overview of global mining expansion for major metals over the past two decades, during

which extraction rates have doubled. It reveals how this rapid expansion has intensified

pressures on ecosystems classified as vulnerable, underscoring unsustainable trends in current

resource extraction. The second paper narrows the focus to Brazil, examining the regional

economic and environmental impacts of mining at the examples of GDP growth and forest

cover change. By highlighting the multifaceted socioeconomic and environmental effects of

mining, the study demonstrates that economic benefits and ecological degradation are no

75
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straightforward trade-offs. It calls for a cautious approach to development narratives that

does not unconditionally prioritise economic gains. The third and final paper traces the

impacts of resource extraction to final demand, linking forest loss from mining activities to

industries and consumption within the European Union. By revealing the environmental

costs embedded in EU supply chains, this paper provides a foundation for policies aimed at

mitigating these impacts through more transparent and responsible sourcing practices.

Notably, this thesis demonstrates the utility of quantitative approaches in assessing en-

vironmental and socioeconomic impacts of mining, exemplified through forest loss and GDP

growth as key metrics. However, many other critical impacts, such as pollution, biodi-

versity loss, water scarcity, and environmental distribution conflicts, remained empirically

unexplored. By focusing on a specific set of impacts, this work establishes a basis for future

research to address these additional dimensions, and potentially develop methods to capture

indirect and cumulative effects across diverse temporal and spatial scales.

Together, the three studies emphasise the need for both demand- and supply-side

measures to curb resource consumption and mitigate the adverse impacts of mining. They

advocate that future resource governance must incorporate tight regulatory measures and

that consumption patterns must be geared towards efficiency and sufficiency. This aligns

with the recommendations of the UN International Resource Panel, which, in its Global

Resources Outlook (UN IRP 2024) argues that demand-side interventions promoting

resource efficiency and sustainable consumption must complement supply-side reforms like

responsible sourcing practices.

This thesis offers several actionable recommendations to improve environmental and so-

cial outcomes in the mining sector. However, these policy recommendations by no means

cover the entire scope of action and instead supplement and support existing calls in the lit-

erature, such as the four actions towards ecologically responsible mining proposed by Sonter

et al. (2023) and the calls for a reimagined infrastructure governance agenda for extractive

industries (Bebbington et al. 2018a; Bebbington et al. 2020). Although some environmental

management practices, including progressive rehabilitation, minimum environmental stan-

dards, and sustainability guidelines, have been implemented by key stakeholders, the findings

from the three studies underscore the need for further action at both local and global levels

to address mining’s complex impacts.

The first paper, for example, emphasises the need for robust monitoring systems to

anticipate the impacts of rising metal production and to track progress toward sustainable

technologies and regulatory improvements. It calls for greater corporate transparency,

requiring detailed, locally specific data on mining practices and changes in the surrounding

environment. These data can serve as indicators for global assessments of mining impacts

and more effective industry monitoring. The paper also stresses the urgency of critically

reviewing, reforming, and enforcing current national environmental regulations, for instance

in light of escalating extraction activities in protected areas. The second paper’s analysis of

Brazil’s mining sector importantly suggests that targeted regulation of industrial mining,

in contrast to informal “garimpo” activities, can yield better environmental outcomes.

It underscores the need for more sustainable solutions, particularly for gold mining,

suggesting that its limited societal benefits may warrant halting such activities. The paper

also highlights the risks of local economies becoming overly dependent on the extractive
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sector, which may undermine more sustainable economic structures. To address these

issues, it advocates for long-term strategic planning, including the prudent management

of mining rents to benefit local communities, reducing economic reliance on mining, and

developing strategies to support resilience in mined-out areas. This thesis further cautions

that national environmental and social standards, as well as policies within associations of

nations like the EU, may be insufficient, as international competition and limited corporate

transparency create obstacles to advancing sustainable resource management. This issue

is particularly highlighted in the third paper, which seeks to inform policy initiatives

like the EU’s Corporate Sustainability Due Diligence Directive (CSDDD) that target the

reduction of environmental and social impacts of large companies across their supply

chains. By illustrating that even flawless CSDDD implementation may be insufficient, the

study calls for stronger international cooperation, legal alignment, and global standards for

responsible mining, as well as policies supporting a fair and just transition, particularly for

resource-producing regions in the Global South. However, the study also offers practical

recommendations for the EU, including sourcing alternatives with lower deforestation

impacts and investment strategies to hold suppliers accountable for their environmental

footprints.

Overall, this dissertation offers innovative insights into particular aspects of mining-

induced change. Many pressing challenges remain, however, and timely action is essential,

as, every day, the global economy’s ongoing reliance on newly mined resources brings fur-

ther environmental change, fuels distribution conflicts, and nudges the planet closer to its

ecological limits. Addressing uncertainties around where and how mining will expand in

response to growing demand and technological advances will be crucial. Current research is

progressing in this direction, aiming to reliably model such developments in the near future.

Looking ahead, future research must further integrate local impact assessments with

global perspectives to equip policymakers with the knowledge needed for sustainable re-

source management that is both environmentally responsible and socially just. This thesis

identifies several key areas where further work is needed. First, developing more compre-

hensive datasets that reduce reliance on corporate disclosures, particularly through the use

of advanced remote sensing technologies, will be crucial. Additionally, there is a need for

new empirical frameworks that go beyond single-issue analyses to better capture the multi-

dimensional impacts of mining. Equally important is the development of methods to assess

the cumulative and indirect effects of mining, including modelling spatial connectivities and

the temporal dynamics of mining impacts. Such approaches will enable more precise and

preventative mining management that addresses potential harms before they materialise.

Finally, refining supply chain models – such as by increasing sectoral resolution – will be

instrumental for accurately tracing the flow of metals and minerals from extraction to final

demand. This will be key to understanding and reducing the global footprint of high-impact

industries, including renewable energy technologies. While this research offers important

insights into addressing massive challenges, it underscores the need for a collective, interdis-

ciplinary approach that engages stakeholders such as local communities, the mining industry,

and consumers. Enhancing our understanding of mining impacts and the policies needed to

address them is essential to providing the material basis for well-being while safeguarding

the planet and all its communities.
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Appendices

A Supplementary Information Paper 1

A.1 Data

Raw data and gap filling

• We downloaded individual mine “production” data for all metals considered in this

study from the SNL Metals & Mining Database (SNL 2020). The download was

conducted in May 2020.

• Note that by “production” SNL refers to metal content (i.e. net weight) for all com-

modities considered in this study except bauxite, iron, and manganese, where “pro-

duction” denotes mostly ores.

• We filtered for “production” > 0 and 2000 ≤ “year” ≤ 2019.

• We used “production” (and hence mostly net weight values) as our baseline because

this variable offered most complete global coverage. Based on this baseline, we esti-

mated respective metal ore extraction in a second step.

• For gap filling of bauxite, iron, and manganese data, we downloaded “ore processed”

data from the SNL Metals & Mining Database and again filtered for “production” > 0

and 2000 ≤ “year” ≤ 2019.

• For bauxite, iron and manganese mines where no “production” but only “ore pro-

cessed” was reported, we added these volumes to our data. We avoided double count-

ing by only considering reported values where either of the three commodities was

listed as “primary commodity”.

• We converted all values to tonnes.

Applying UNEP conversion factors

• For copper, lead, zinc, nickel, gold and silver, we estimated extracted gross weight

volumes by applying the same conversion factors as they were used for the construction

of UNEP’s Global Material Flows database (UN IRP 2017a).

• We divided net weight volumes by country- and metal-specific conversion factor es-

timates as summarised in Table A1. Data in the table of factors does not solely

represent the estimation factors as used in the compilation of the last version of the

IRP database, as a range of additional conditions were applied. Furthermore it does
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not represent the set of estimation factors used in the current IRP database version

upcoming in 2021, which have been compiled on a different basis.

Commodity Min 25% Median Mean 75% Max
Copper 0.2300 0.5200 0.9050 6.6894 0.9900 100.0000
Gold 0.0001 0.0003 0.0004 0.0006 0.0006 0.0075
Lead 0.5230 2.4000 4.1785 3.8419 5.3250 5.9479
Nickel 0.2000 1.2000 1.9800 23.8447 3.0000 100.0000
Silver 0.0129 0.0300 0.0300 13.2675 0.0300 100.0000
Zinc 0.9000 4.8300 4.8300 5.3597 5.0000 14.9669

Table A1: Summary statistics of UN IRP (2017) conversion factors utilised in this study; in %; n = 146
countries

Limitations

• Polymetallic ores are difficult to attribute to single metals on an aggregated scale (West

et al. 2020; Tost et al. 2020). We hence decided to build upon SNL’s “production”

values. This means that an upward bias might be introduced for metals that frequently

occur as by-products, such as lead and silver. A comparison of aggregated accounts

with UNEP’s Global Material Flows database values for“domestic extraction” yields

a good fit (see Figure A1), but it must be noted that the same difficulties in data

compilation applied to the UNEP data.

• It is still to be expected that our data are conservative estimates due to mining sites

being missed out by SNL, and the impossibility of fully recording artisanal and informal

mining operations on a global scale.

• Bias regarding specific regions can be introduced if specific regions are systematically

differently covered by SNL. We noticed high uncertainty for Chinese mining sites. For

2017, our SNL-based approach yields significantly smaller mining volumes of approx-

imately 1,500 Mt of iron ore and 16 Mt of manganese ore less than reported in the

UNEP data. Therefore, we refrained from interpreting any results with regard to

China in our study.

• By assuming national averages as conversion factors between reported metal content

and estimated ore extraction, we accept a considerable degree of uncertainty in the

data. Especially for larger amounts, small variations in ore grades may already lead

to significant deviations in extraction estimates. To help quantifying this effect, we

compared our data with estimates from individual mine conversion factors. In a small

case study, we selected copper as the metal of interest and reduced the analysis to

Australia, Chile, Peru and Zambia. We used mine-specific ore grades available from

the supplementary information of Mudd and Jowitt (2018) and matched this data

with our list of mines from SNL (2020). We then computed and contrasted extraction

volumes for 2015 based on both national ore grade averages and individual grades

as summarised in Table A3 and Figures A2 and A3. For our sample, we find some

substantial deviations based on ore grade assumptions, but also that corresponding

extraction estimates correlate well. We tend to rather under- than overestimate ex-

traction volumes compared to the mine-specific approach. Most significant deviations

are found for Peru, in total resulting in a 2015 national estimate of 350 Mt using

individual ore grades vs. only 90 Mt using the UNEP average grade of 1.8% for the
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considered 25 mines. The deviation relates to large Peruvian copper mines, where

individual grades were reported to be considerably lower than the assumed national

average.

While data on individual ore grades was published in previous works for a number of

metals (e.g. Mudd et al. 2017 and Mudd and Jowitt 2018), no extensive, harmonised

and openly available global database on a large range of metals is yet available. We

concluded that an approximation approach was most suitable for our analysis, because

a harmonisation of existing material and potential extensions would have been beyond

the scope of our analysis. For future research, we can only highlight the importance

of simple access to harmonised data, at best using unique mine identifiers such as

geocodes, as well as the great potential that lies in the combination of statistical

reports and additional information – most notably from satellite imagery – to estimate

resource extraction and environmental impacts.
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Data summary

Bauxite Iron Nickel
Year Content [Mt] Ore [Mt] Avg. CF Content [Mt] Ore [Mt] Avg. CF Content [Mt] Ore [Mt] Avg. CF
2000 121.6154 947.1160 1.0615 90.7601 1.1696
2001 123.0441 942.9956 1.1675 96.4668 1.2102
2002 129.0004 1003.5283 1.1581 96.3204 1.2023
2003 137.5569 1107.2741 1.1257 102.9003 1.0940
2004 139.0460 1188.4307 1.2034 104.2362 1.1545
2005 157.0885 1288.8093 1.3179 108.3051 1.2168
2006 159.6403 1412.6257 1.3912 111.8240 1.2441
2007 165.7980 1471.0586 1.3946 118.9655 1.1723
2008 172.7108 1570.4442 1.3668 110.0675 1.2418
2009 164.1642 1473.1348 1.2117 108.1768 1.1201
2010 179.0968 1729.9033 1.3130 130.8332 1.0036
2011 185.5672 1797.0445 1.3983 121.6595 1.1494
2012 193.9284 1873.5024 1.4826 123.6844 1.1987
2013 195.6001 1884.6442 1.5683 119.4311 1.3132
2014 191.3867 1982.1119 1.4927 112.1712 1.3307
2015 184.1518 2028.2689 1.5901 121.2229 1.3117
2016 196.5633 2079.5212 1.9519 147.2955 1.3252
2017 180.7309 2088.0441 1.9468 150.9611 1.2896
2018 179.1387 2121.3685 1.7581 135.4898 1.2976
2019 179.8947 2200.5818 1.7047 140.6466 1.2121

Copper Lead Silver
Year Content [Mt] Ore [Mt] Avg. CF Content [Mt] Ore [Mt] Avg. CF Content [Mt] Ore [Mt] Avg. CF
2000 12.2515 1548.7819 0.7910 2.4742 73.4762 3.3674 0.0121 24.3872 0.0497
2001 13.2027 1662.8676 0.7940 2.3648 67.9017 3.4827 0.0124 25.8121 0.0479
2002 13.3412 1634.0790 0.8164 2.2746 63.9930 3.5545 0.0128 28.4287 0.0452
2003 13.4605 1645.5423 0.8180 2.1611 60.7282 3.5587 0.0120 26.2915 0.0457
2004 14.3323 1718.9156 0.8338 2.2411 65.5983 3.4165 0.0130 29.1373 0.0445
2005 14.7312 1798.2449 0.8192 2.4112 70.0962 3.4398 0.0137 30.4154 0.0451
2006 14.3985 1745.0136 0.8251 2.3780 69.3035 3.4313 0.0137 30.9785 0.0443
2007 14.4107 1723.1330 0.8363 2.1538 62.1263 3.4668 0.0156 37.5112 0.0415
2008 14.8674 1784.3460 0.8332 2.4212 67.9368 3.5639 0.0162 40.6294 0.0398
2009 15.4026 1808.0036 0.8519 2.2115 60.8515 3.6343 0.0154 39.2870 0.0391
2010 14.9656 1763.2787 0.8487 2.4010 65.0003 3.6938 0.0169 41.5637 0.0407
2011 15.0256 1772.7691 0.8476 2.4330 66.2090 3.6747 0.0169 41.1528 0.0411
2012 15.4355 1800.8653 0.8571 2.2999 63.9610 3.5958 0.0180 44.6081 0.0403
2013 16.7593 1936.0821 0.8656 2.3584 63.9676 3.6869 0.0190 48.3043 0.0394
2014 16.9550 1976.3345 0.8579 2.3561 63.8887 3.6879 0.0195 51.3607 0.0379
2015 17.6478 2055.1359 0.8587 2.4430 66.2898 3.6854 0.0200 52.9119 0.0378
2016 18.9348 2194.8312 0.8627 2.7065 71.2459 3.7988 0.0187 52.6527 0.0355
2017 18.6524 2140.1618 0.8715 2.6314 69.7795 3.7710 0.0183 50.1524 0.0365
2018 19.1758 2171.1827 0.8832 2.8638 75.7409 3.7811 0.0177 48.1747 0.0368
2019 19.1717 2159.0821 0.8880 2.8802 75.8814 3.7956 0.0191 52.3006 0.0366

Gold Manganese Zinc
Year Content [Mt] Ore [Mt] Avg. CF Content [Mt] Ore [Mt] Avg. CF Content [Mt] Ore [Mt] Avg. CF
2000 0.0020 778.7653 0.0003 16.0008 6.8875 181.7657 3.7892
2001 0.0021 823.0934 0.0002 15.8721 7.9238 208.3392 3.8033
2002 0.0019 759.7741 0.0003 16.8121 7.7954 218.8607 3.5618
2003 0.0020 771.4307 0.0003 17.7732 7.8499 220.6174 3.5582
2004 0.0019 721.4750 0.0003 22.1492 7.7205 205.5910 3.7553
2005 0.0019 739.6501 0.0003 23.8596 7.8932 208.6280 3.7834
2006 0.0018 699.6095 0.0003 23.5832 8.2997 219.1344 3.7875
2007 0.0018 676.9916 0.0003 23.3960 8.6860 234.8893 3.6979
2008 0.0018 669.5606 0.0003 25.6741 8.6200 249.7848 3.4510
2009 0.0019 693.6454 0.0003 20.1129 8.3403 249.9667 3.3366
2010 0.0019 723.0663 0.0003 28.3813 8.7602 254.6770 3.4397
2011 0.0020 738.7320 0.0003 29.0540 8.4787 234.2322 3.6198
2012 0.0020 751.9583 0.0003 32.0360 8.7385 244.5789 3.5729
2013 0.0021 771.3372 0.0003 32.6361 8.3261 243.9494 3.4130
2014 0.0022 789.6254 0.0003 38.5364 8.4008 242.3071 3.4670
2015 0.0022 809.8479 0.0003 37.7014 8.3547 248.4502 3.3627
2016 0.0022 822.7619 0.0003 34.9103 8.5889 251.1772 3.4195
2017 0.0023 890.6802 0.0003 40.4473 8.8472 267.2152 3.3109
2018 0.0024 881.1796 0.0003 44.5664 9.5039 273.4248 3.4759
2019 0.0024 872.2883 0.0003 45.9968 9.1315 253.0751 3.6082

Table A2: Annual aggregates of the data considered in this study. Content is obtained from SNL (2020).
Ore is based on SNL and country- and commodity-specific conversion factors from UN IRP (2017). The
average conversion factor (CF, in %) depicted in this table follows from content and ore figures.
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Comparison with UNEP country aggregates
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Figure A1: Globally aggregated crude ore extraction of the commodities covered in this study. Comparison
of the utilised data (based on mine accounts by SNL 2020) and UNEP’s national statistics (UN IRP 2017a).
UNEP 2015–2017 are projections; no data yet available for 2018 and 2019. Large deviations for nickel in
2011–2013 are driven by BGS (2021) (used as a source for UNEP’s domestic extraction statistics) reporting
an extreme production increase for Indonesia over this period (followed by a rapid drop in 2014). This
development is apparently not reflected in the SNL data.
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Ore grade estimates for copper

Country Ore UNEP Ore MJ ρ CF UNEP CF MJ min CF MJ median CF MJ mean CF MJ max n

Australia 105.77 157.74 0.60 1.01 0.11 1.06 1.40 5.65 24
Chile 527.55 1006.94 0.98 1.00 0.27 0.53 0.63 1.64 30
Peru 90.51 346.10 0.89 1.80 0.07 0.45 0.53 1.38 25
Zambia 88.00 88.50 0.83 0.99 0.51 2.06 1.82 4.11 12

Table A3: Copper extraction estimates (’Ore’, in Mt) for 2015 based on SNL (2020) and conversion factors
(CF, %) from (a) UN IRP (2017) (UNEP) and (b) Mudd and Jowitt (2018) (MJ); ρ = Pearson correlation
coefficient between extraction estimates from both approaches; n = number of observations using semi-
automatised matching of mining properties by their names.
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Figure A2: 2015 copper extraction estimates for each mine: UN IRP (2017) vs. Mudd and Jowitt (2018)
conversion factors. Solid line indicates 45 degrees.
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Figure A3: National average UN IRP (2017) copper ore grades vs. mine-specific grades from Mudd and
Jowitt (2018).
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Counts of 1 degree resolution mining cells

Using 1 degree resolution grid cells (i.e. about 110 km × 110 km at the equator) and

grouping by commodity, we compared annual grid cell counts with average extraction vol-

umes per cell. Grid aggregates were chosen instead of point data because we were interested

in a regional spread rather than an expansion of already existing agglomerations of sites. In

doing so, we were able to draw development paths (i.e. a scatter plot with chronologically

connected points) in order to relate densification and spatial spread for each metal.

Figure A4 compares the annual counts of 1 degree mining cells with average extraction

per observation for the timeline between 2000 and 2019. We can observe three different

development patterns, highlighted by different colours. Most commodities show a significant

increase in counts, indicating a substantial spatial expansion of mining activities. Only the

occurrences of manganese and bauxite stagnate, while significant gains in mining intensity

can be observed (purple). Bauxite extraction per mining grid increased by 122%, and the

extraction of manganese ores by 278% between 2000 and 2019. For nickel, lead, zinc, copper

and gold ores, we observe an increase of grid counts and hence a spatial spread, while

the average extraction per observation has fallen (green). Iron and silver ore extraction

also indicate a spatial spread, but on top of that they yield a slight expansion of average

extraction intensities (blue).

Bauxite

Copper
Gold

Iron

Lead

Manganese

Nickel

Silver

Zinc

100

200

300

0 100 200 300 400 500
No. of mining grids

A
ve

ra
ge

 m
eg

at
on

ne
s 

pe
r 

gr
id

 (
in

de
x,

 2
00

0 
=

 1
00

)

Figure A4: 2000-2019 development of the counts of 1 degree resolution mining grid cells and average
extraction volumes per cell (index, 2000 = 100); starting and end points of arrows denote the years 2000
and 2019, respectively; based on SNL (2020) and UN IRP (2017) conversion factors.
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Alternative (more granular) grid cell aggregates for 2019

2019 metal ore extraction [in Mt]

0.1 0.3 0.5 1 1.7 3.2 7.6 209.4

Figure A5: Global 2019 metal ore extraction (in Mt) grouped by 8 quantiles on a 0.5 degree resolution (i.e.
about 55 km× 55 km at the equator) using a Robinson map projection. Based on SNL (2020) and UN IRP
(2017) conversion factors.

2019 metal ore extraction [in Mt]

0.1 0.2 0.4 0.7 1.3 2.4 6 209.4

Figure A6: Global 2019 metal ore extraction (in Mt) grouped by 8 quantiles on a 0.1 degree resolution (i.e.
about 11 km× 11 km at the equator) using a Robinson map projection. Based on SNL (2020) and UN IRP
(2017) conversion factors.
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Distribution across mining cells

Elaborating the distribution of extraction volumes across mining grid cells, we moved

to a more granular level by dividing the 1 × 1 degree cells into quarters. Subsequently, we

ordered them from highest to lowest extraction volumes and show them as bar charts per

commodity in Figure A7.

In 2019 (Figure A7 right column), 39% of the reported global total of 180 Mt of mined

bauxite ore were extracted in only two Australian mining regions, one being located south

of Perth and the other along Cape York Peninsula’s Gulf of Carpentaria coast. 6% (131 Mt)

of all copper ore (2159 Mt) came from a single 28 km × 28 km cell in Chile’s Antofagasta

region, and 50% from 25 out of 360 copper mining regions worldwide. For gold, where we

counted the largest number of observations (699 mines located in 626 different grids), we

find that more than 20% of ore were extracted in only seven grids. Iron ore was to a large

majority mined in a small number of Australian and Brazilian mining sites with more than

50% of 2019 global supply of 2201 Mt stemming from only 13 mining grids. Global lead

extraction added up to 76 Mt originating from 212 different grid cells, 7% of which were

mined in one small area in the East Kazakhstan Region and more than 20% coming from

merely 4 regions. Manganese ore was mined in only 24 grid cells in 2019 with the largest

site located near Kuruman, South Africa, producing 21 of the total of 46 Mt. Three regions,

two next to Lake Matano, Indonesia, and the sites around Moa, Cuba, together accounted

for more than 50% of the 141 Mt of nickel that were mined in 2019. 52 Mt of silver were

extracted in 323 different 0.25 × 0.25 degree regions, the top 3 grids (located in Mexico,

Poland and Bolivia) accounting for 12 Mt. Global zinc extraction added up to 253 Mt,

with its highest concentration at the Peruvian Antamina mine, satisfying 12% of worldwide

demand. Overall, our data based on SNL (2020) and UN IRP (2017) add up to 6 bn tonnes

of ore extracted in 2019. Total extraction could be aggregated into 2,239 0.25× 0.25 degree

grid cells, and 20% of it into only 10 mining grids. Comparing 2000 (Figure A7 left column)

and 2019 values indicates that the distributional patterns have not changed considerably,

but the extraction volumes have. We find, for example, a 187% increase in the extraction

of manganese ores, 132% in iron ores and a 114% increase in the extraction of silver ores.
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Figure A7: Metal ore extraction on a 0.25 degree resolution (i.e. about 28 km×28 km at the equator) based
on SNL (2020) and UN IRP (2017) conversion factors.

A.2 Geographically weighted regression

We used a geographically weighted regression (GWR, Brunsdon et al. 1996) to estimate the

trends in metal ore extraction for each mining location s = 1, . . . , n, such that

y(s) = X(s)β(s) + ϵ(s) (A1)

where the dependent variable y(s) denotes the log-transformed extraction volume of a mine

at location s. The row vector of explanatory variables X(s) at location s includes only

two elements in our application, first being a 1 allowing for an intercept and the second

indicating the respective year. β(s) is a column vector of the corresponding regression

coefficients and ϵ(s) the random error at location s following a Gaussian distribution. The

vector of estimated parameters in a GWR model at location s is derived as

β̂(s) = [X ′W (s)X]−1X ′W (s)y, (A2)
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where X is the design matrix of explanatory variables and W (s) a diagonal weights matrix

of dimension n that is calculated for each calibration location s. The elements of W (s) are

obtained from the kernel function

wj(s) = exp(−1/2(dsj/h)
2), (A3)

where dsj is the distance between locations s and j and h is the bandwidth parameter

obtained via cross-validation across all the calibration locations. In order not to put weight

on observations that are very far away, only the nearest 1% of all locations from the sample

were considered for constructing the weights. All calculations were conducted in R (R Core

Team 2024) utilising functions from the spgwr package (Bivand and Yu 2020) that were

modified in a way such that the calculations could be run on multiple cores in parallel.

Mapping positive and negative coefficient estimates

●

●
●●●●

●

●●
●●

●
●

●

●

●

●

●●●
●

●

●

●●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●● ●

●

●

●

●

●

●
●

●
●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●●●
●

●● ●
●●●●●●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●

●●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●
● ●●●●●

●

●

●

●

●

●

●●●

●● ●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●●

●
● ●

● ●●

●

●

●

●

●●

●

●

●
●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●

●●●

●

● ●

●●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●●●
●
●

●

●
●

●
●

●

●●

●
●

●

●●●
●

●●

●

●
●

●●

●

●●

●

●

●●●

● ●

●

●

●●●
●

●●

●
●

●●
●●●●●

●
●●●

●

●
●

●

●

●
●
●
●●
●●●●
●
●●
●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●

●
● ●

●

●

● ●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●
●
●●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●●

● ●

●

●
●●

● ●

●

●
●

●

●

●

●●●

●●

●

−5.0% 0.0% 5.0% 10.0%

Avg. annual extraction trend

Figure A8: 2000-2019 global extraction trends in metal mining, i.e. linear coefficient estimates at point
locations obtained from GWR; based on SNL (2020) and UN IRP (2017) conversion factors.

Global GWR maps separate by metal are provided for download in the online version of

the article at https://doi.org/10.1016/j.gloenvcha.2021.102303.

A.3 Further results

Global ore maps separate by metal and for the years 2000, 2010, 2015 and 2019 are provided

for download at https://doi.org/10.1016/j.gloenvcha.2021.102303.

https://doi.org/10.1016/j.gloenvcha.2021.102303
https://doi.org/10.1016/j.gloenvcha.2021.102303


104 APPENDICES

B Supplementary Information Paper 2

B.1 The Brazilian mining sector

Mining activities vary in size of operation, workforce and their degree of mechanisation. In

Brazil, mining titles are issued to companies, cooperatives and individuals by the National

Mining Agency as part of the licensing procedures for mining initiatives. Thereby, the

Brazilian mining legislation distinguishes between concessions for large-scale commercial

mines and the “Garimpeira Mining Permission” (Manzolli et al. 2021). Originally designed

in 1989 to accommodate artisanal and small-scale alluvial mining, this permission sought to

recognise and protect miners using rudimentary tools. However, mining techniques within

this sector have evolved, albeit often retaining a lower degree of mechanisation, relying on

a less specialised workforce and lacking permanent infrastructure. Despite these changes,

the regulatory framework for the Garimpeira Mining Permission remains relatively relaxed

and decentralised compared to the industrial mining concessions, facilitating “industrial or

near-industrial-scale mineral exploration under a weaker regulatory framework” (Cozendey

et al. 2022, p. 2). Showing exceptional expansion since 2008, “garimpos” (wildcat miners)

today constitute a sector of comparable scale to the highly industrialised commercial mining

sector in terms of land utilisation (MapBiomas 2021). These operations, primarily focused

on gold mining, frequently operate outside legal boundaries, resulting in significant socio-

environmental ramifications (Manzolli et al. 2021).

Brazil’s centre of industrial mining is the state of Minas Gerais, where 145 municipalities

(17% of the state) were subject to mining activities in 2020. However, the intensification of

mining has mostly occurred in the Legal Amazon area, where huge industrial mining projects

such as the Carajás iron ore complex or the Paragominas bauxite mine as well as garimpo

mining activities along Amazonian river banks (Maus et al. 2022) have expanded. The surge

in mining in the Amazon – in 2020, 68 out of every 100 ha mined in Brazil – suggests a shift

in the socioeconomic and environmental characteristics of mining areas, such as increased

disturbance of pristine forest ecosystems and indigenous communities in the Legal Amazon.

Figure B1 depicts how mining area was distributed across Brazilian biomes in 2005, 2010,

2015 and 2020.

Having its economy firmly oriented towards the export of natural resources, Brazil has

experienced significant economic ups and downs in the past two decades. Economic expan-

sion took place between 2000 and 2011, and it is no coincidence that global commodity prices

were rising during most of that time, which is known as the 2000s commodities boom. How-

ever, after having recovered from the global financial crisis, commodity prices fell steadily

between 2011 and 2016. A decrease in demand, especially from the Chinese market, and

falling mining revenues led to a deep recession in 2014.

B.2 Spatial weights matrix

Spatial econometric models operationalise spatial dependence using weights matrices. These

are in most cases constructed by exploiting information on geographic contiguity or distance

between spatial units (see, e.g., Anselin 2013 for further information on spatial weights

matrices). In this study, we used a k = 5 nearest neighbours specification as illustrated in

Figure B4, defining the neighbours of a municipality as the five closest spatial units next to
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this municipality (measured at municipality centroids). In a fist step, neighbourhood was

defined as a binary indicator. Subsequently, the matrix was row-standardized by dividing

each cell of the matrix (either a 0 or a 1) by its respective row sum, such that the entries

of each row add up to one. The specification implies positive entries in the matrix for

neighbouring observations, but also that the matrix is not symmetric. The spatial weights

matrix was computed and visualised using the sf (Pebesma 2018) and spdep (Bivand et al.

2013) packages in R (R Core Team 2024).

It is not our intention to capture the exact spatial relations between Brazilian munic-

ipalities (it would be impossible to come up with such a measure), but to model spatial

dependence in a realistic yet parsimonious way. We are aware that the row-standardization

implies that the spatial lag (Wy andWX) is a weighted average of observations, which is

a simplification of spatial dependence (Plümper and Neumayer 2010), but the transforma-

tion ensures the stability condition that the spatial parameter is bound between −1 and 1

(LeSage and Pace 2009). Furthermore, while there are other, in some sense less simplifying,

approaches in defining neighbourhood such as trade and investment links or shared char-

acteristics such as languages instead of geographic distance, we stick to using geographic

proximity as a proxy for connectivity. Most non-geographic connectivity specifications are

rather suitable for cross-country studies or demand complex municipality-level trade models

due to patchy municipality-level flow data. Due to the strong heterogeneity regarding mu-

nicipality size, we preferred a k-nearest neighbours specification over a contiguity or inverse

distance specification. As shown in Figures B8 and B9, impact estimates are robust against

alternative k = 4, 7, and 10 nearest neighbours definitions. However, the spatial parameter

ρ varied depending on the choice of k, with 0.29, 0.37 and 0.44 in the economic growth

model, 0.65, 0.72 and 0.74 in the relative forest loss specification and 0.56, 0.69 and 0.76 in

the absolute forest loss model.

B.3 MCMC estimation

We used Bayesian Markov-chain Monte Carlo (MCMC) techniques in order to estimate the

unknown parameters of the spatial Durbin models (SDM). The interested reader is referred

to LeSage and Pace (2009) and Kuschnig (2022) for more information on estimating Bayesian

spatial econometric models. Weakly informative multivariate Gaussian priors, centred on

zero with a large variance of 104, were used for the parameters β, θ, δ and γ. The disturbance

parameters σ2 and σ̃2 were drawn from inverse Gamma distributions IG(0.01, 0.01) using

weakly influential shape and scale parameters. For the spatial autocorrelation parameters

ρ and λ, we used prior distributions defined on the interval (−1, 1) and centred on zero as

suggested in LeSage and Parent (2007):

ρ, λ ∼ 1

Beta(a0, a0)

(1 + ρ)ao−1(1− ρ)ao−1

22a0−1
(B1)

with hyperparameter value a0 = 1.01.

The conditional posterior distributions for the parameters β, θ, δ, γ, σ2 and σ̃2 follow

known forms and were obtained using standard Gibbs sampling. The conditional distribu-

tions of the spatial parameters, however, are not reducible to well-known distributions. We

thus used the Griddy Gibbs approach proposed by Ritter and Tanner (1992) in order to
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sample for ρ and λ. MCMC estimation results were obtained from 20,000 iterations and

discarding the first 10,000 as burn-ins. Models ran for robustness checks were obtained from

2,000 iterations discarding the first 1,000. Estimations were performed in R (R Core Team

2024). The diagnostics by Geweke (1992) were used to confirm convergence of the sampler

using the coda (Plummer et al. 2006) R package.

B.4 Regression results

Economic growth models

In addition to mining impacts, the economic growth models indicate how transformations

from one land cover category to another relate to the economic growth rates of municipalities.

Tables B2 and B3 summarise the related results (LUC control variables).

We can further interpret the effects of initial land cover classifications, i.e. the charac-

teristics of municipalities at the beginning of a 5-year growth window. The results suggest a

positive direct effect of agriculture. Moreover, findings reveal that agricultural land, forest

plantation and pasture were associated with negative indirect effects.

The impact estimates of the growth models are completed by a number of further control

variables, which are briefly summarised as follows: We found significant evidence of growth

convergence, which is indicated by the negative direct impact estimate for initial income,

which exceeds counterbalancing positive spillover effects from high-income neighbours. This

finding is in line with the theoretical and empirical growth literature (López-Bazo et al. 2004;

Resende et al. 2016). For human capital, effects were in opposite direction, again conforming

to earlier works, but indirect effects were comparably less clearly negative (LeSage and

Fischer 2008; Resende et al. 2016). For population growth and population density, we found

negative direct impacts, as well as a positive indirect effect for population density. Regarding

the sectoral structure, positive (direct and indirect) links were found for initial GVA in the

service sector, while municipalities with large shares in the agriculture and industry sectors

tended to grow at lower rates. Lastly, we turn the attention to ρ, the spatial parameter,

confirming the presence of spatial dependence with an estimate of 0.32.

Forest loss models

Regardless of defining forest loss as ha per km2 (Tables B4 and B5) or in absolute terms

(Tables B6 and B7), initial natural forest area was most clearly associated with forest loss.

Regarding other land cover and land cover change control variables, insights were less con-

clusive.

Drawing our attention to the remaining control variables, results reveal that GDP growth

was negatively related with forest loss in the absolute forest loss definition, while no effects

were found for the relative forest loss measure. The biophysical variables precipitation

and elevation played no major role, except from the finding that municipalities at higher

altitudes showed lower absolute forest loss. Lastly, note that forest loss exhibits strong

spatial dependence (ρ = 0.68 for ha per km2 and ρ = 0.62 for absolute ha), supporting the

need for spatial regression approaches.
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B.5 Supplementary figures

Figure B1: Brazilian biomes and mining area. The six terrestrial biomes of Brazil and state borders
(A). Mining area (in 1,000 ha) within Brazilian biomes in 2005, 2010, 2015 and 2020 (B). Data: IBGE via
the geobr (Pereira and Goncalves 2022) R package and MapBiomas (2023).
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Figure B2: Selection of variables used in the analysis (2005, 2010, 2015). Industrial mining binary
indicator (A-C), garimpo mining binary indicator (D-F), GDP per capita (G-I) and GDP per capita
5-year average annual growth rates (J-L). White areas were not considered in the study due to changes of
municipality borders during the sample period.
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Figure B3: Selection of variables used in the analysis (2005, 2010, 2015). Share of area covered by
natural forest formation (A-C), absolute forest loss, i.e. decrease in natural forest cover in ha (D-F) and
relative forest loss, i.e. decrease in natural forest cover relative to municipality area in ha per km2 (G-I).
White areas were not considered in the study due to changes of municipality borders during the sample
period.
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Figure B4: Spatial weights matrix. Visualisation of the k = 5 nearest neighbours spatial weights matrix
employed in this study. Blue lines indicate neighbourhood, grey lines show municipality borders.
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Figure B5: Direct and indirect impact estimates of industrial mining. Impacts of industrial mining
measured in ha on 5-year average annual GDP per capita growth (A), forest loss in ha per km2 (B) and
forest loss in ha (C). Left panels show yearly estimates, right panels show pooled (pre 2010 and since 2010)
estimates. Estimates were obtained from 2,000 Markov chain Monte Carlo iterations, with the first 1,000
being discarded as burn-in. Points denote posterior means, error bars show 95% posterior credible intervals.
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Figure B6: Direct and indirect impact estimates of garimpo mining. Impacts of garimpo mining
measured in ha on 5-year average annual GDP per capita growth (A), forest loss in ha per km2 (B) and
forest loss in ha (C). Left panels show yearly estimates, right panels show pooled (pre 2010 and since 2010)
estimates. Estimates were obtained from 2,000 Markov chain Monte Carlo iterations, with the first 1,000
being discarded as burn-in. Points denote posterior means, error bars show 95% posterior credible intervals.
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Figure B7: Direct and indirect impact estimates. Impacts of binary mining indicator on 3-year
average GDP per capita growth (A) and 7-year average GDP per capita growth (B). Left panels show
yearly estimates, right panels show pooled (pre 2010 and since 2010) estimates. Estimates were obtained
from 2,000 Markov chain Monte Carlo iterations, with the first 1,000 being discarded as burn-in. Points
denote posterior means, error bars show 95% posterior credible intervals.
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Figure B8: Direct and indirect impact estimates of industrial mining. Impacts of binary industrial
mining indicator on 5-year average GDP per capita growth (A), forest loss in ha per km2 (B) and forest
loss in thousand ha (C). Left panels show yearly estimates, right panels show pooled (pre 2010 and since
2010) estimates. Different linetypes show results using k = 4, k = 7 and k = 10 nearest neighbours spatial
weights matrices. Estimates were obtained from 2,000 Markov chain Monte Carlo iterations, with the first
1,000 being discarded as burn-in. Points denote posterior means, error bars show 95% posterior credible
intervals.
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Figure B9: Direct and indirect impact estimates of garimpo mining. Impacts of binary garimpo
mining indicator on 5-year average GDP per capita growth (A), forest loss in ha per km2 (B) and forest
loss in thousand ha (C). Left panels show yearly estimates, right panels show pooled (pre 2010 and since
2010) estimates. Different linetypes show results using k = 4, k = 7 and k = 10 nearest neighbours spatial
weights matrices. Estimates were obtained from 2,000 Markov chain Monte Carlo iterations, with the first
1,000 being discarded as burn-in. Points denote posterior means, error bars show 95% posterior credible
intervals.
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B.6 Supplementary tables

Variable Description GM FLM

Economic growth Five-year average annual growth rate of gross domestic product per capita. Source: IBGE (2023a; 2023b) D I
Forest loss (relative) Annual decrease in natural forest formation relative to municipality area (ha/km2). Source: MapBiomas (2023) D
Forest loss (absolute) Annual decrease in natural forest formation (ha). Source: MapBiomas (2023) D

Mining industrial Presence of industrial mining within municipality, binary indicator. Source: MapBiomas (2023) I I
Mining garimpo Presence of garimpo mining within municipality, binary indicator. Source: MapBiomas (2023) I I

Land use change (LUC1,2) Land use change from classification LUC1 to LUC2 for the classifications forest formation, forest plantation, I I
grassland, agriculture and pasture (5-year average change in ha, log). Source: MapBiomas (2023)

Initial natural forest Share classified as forest formation. Source: MapBiomas (2023) I I
Initial forest plantation Share classified as forest plantation. Source: MapBiomas (2023) I I
Initial grassland Share classified as grassland. Source: MapBiomas (2023) I I
Initial agriculture Share classified as agriculture. Source: MapBiomas (2023) I I
Initial pasture Share classified as pasture. Source: MapBiomas (2023) I I

Initial income Per capita gross domestic product (million BRL, current PPP, log). Source: IBGE (2023a; 2023b) I
Human capital Education index from 0 (worst) to 1 (best): schooling coverage (pre-school attendance) and quality I

in elementary school. Source: FIRJAN (2018)
Population growth Population growth rate (%). Source: IBGE (2023a) I
Population density Population density (thousand per km2). Source: IBGE (2023a) I
GVA agriculture Gross value added in agriculture (million BRL, current PPP, log). Source: IBGE (2023b) I
GVA industry Gross value added in industry (million BRL, current PPP, log). Source: IBGE (2023b) I
GVA services Gross value added in services (million BRL, current PPP, log). Source: IBGE (2023b) I

Precipitation Precipitation yearly average (standardised). Source: CRU (2021) I I
Elevation Average elevation (m). Source: USGS (2021) I I

Table B1: Variables used in the analysis (measured at the beginning of the respective growth/forest loss
window). GM and FLM indicate use of variables in growth and forest loss models, respectively. D denotes
dependent and I denotes independent variables. Variables are mapped in Figures B2 and B3.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Industrial mining 2005 1.127 1.614 2.119 -0.423 0.725 1.898
Industrial mining 2006 1.847 2.355 2.861 -0.252 0.894 2.033
Industrial mining 2007 1.363 1.834 2.310 0.581 1.766 2.952
Industrial mining 2008 0.835 1.364 1.850 1.013 2.172 3.210
Industrial mining 2009 0.917 1.416 1.904 1.442 2.493 3.688
Industrial mining 2010 -0.578 -0.124 0.374 -1.576 -0.508 0.543
Industrial mining 2011 -1.419 -0.943 -0.500 -1.696 -0.654 0.448
Industrial mining 2012 -1.119 -0.577 -0.069 -2.487 -1.385 -0.318
Industrial mining 2013 -0.406 0.065 0.528 -2.359 -1.318 -0.233
Industrial mining 2014 -0.130 0.365 0.841 -1.380 -0.220 0.800
Industrial mining 2015 0.289 0.765 1.224 -0.861 0.152 1.211

Garimpo mining 2005 -0.508 0.177 0.793 -0.683 0.687 2.219
Garimpo mining 2006 -0.356 0.246 0.810 -0.910 0.510 1.896
Garimpo mining 2007 -0.333 0.272 0.973 -1.196 0.279 1.720
Garimpo mining 2008 -0.227 0.378 0.951 -1.318 0.023 1.412
Garimpo mining 2009 -0.103 0.467 1.082 -0.763 0.569 1.869
Garimpo mining 2010 -0.356 0.284 0.937 -0.658 0.774 2.281
Garimpo mining 2011 -0.517 0.116 0.735 -1.296 0.116 1.597
Garimpo mining 2012 -0.506 0.065 0.660 -0.196 1.168 2.503
Garimpo mining 2013 -0.532 0.119 0.685 -0.728 0.713 1.959
Garimpo mining 2014 -0.566 0.043 0.656 -1.479 -0.068 1.299
Garimpo mining 2015 -0.798 -0.220 0.388 -1.447 -0.068 1.363

LUCAgriculture,ForestPlantation 0.007 0.069 0.123 -0.020 0.127 0.285

LUCAgriculture,Grassland -0.146 -0.075 -0.001 -0.042 0.167 0.369

LUCAgriculture,Pasture -0.041 -0.009 0.021 0.176 0.249 0.322

LUCNaturalForest,Agriculture -0.004 0.066 0.133 0.128 0.292 0.477

LUCNaturalForest,ForestPlantation -0.005 0.032 0.069 -0.088 0.001 0.087

LUCNaturalForest,Grassland -0.121 -0.070 -0.018 -0.186 -0.057 0.079

LUCNaturalForest,Pasture -0.033 0.000 0.033 -0.080 -0.033 0.020

LUCForestPlantation,Agriculture 0.037 0.105 0.177 -0.196 -0.003 0.247

LUCForestPlantation,Grassland 0.016 0.106 0.199 -0.540 -0.292 -0.039

LUCForestPlantation,Pasture -0.031 0.017 0.062 -0.249 -0.122 -0.000

LUCGrassland,Agriculture 0.021 0.079 0.140 -0.124 0.033 0.191

LUCGrassland,ForestPlantation -0.087 -0.023 0.043 -0.313 -0.152 -0.007

LUCGrassland,Pasture -0.055 -0.011 0.031 0.067 0.165 0.264

LUCPasture,Agriculture 0.017 0.042 0.068 -0.063 -0.007 0.047

LUCPasture,ForestPlantation -0.001 0.035 0.068 -0.180 -0.103 -0.034

LUCPasture,Grassland 0.070 0.112 0.159 -0.108 -0.006 0.096

Initial agriculture 2.340 2.906 3.501 -1.861 -1.043 -0.335
Initial natural forest -0.715 -0.222 0.259 -0.087 0.611 1.309
Initial forest plantation -0.539 0.984 2.534 -8.319 -5.272 -2.207
Initial grassland -1.209 -0.139 0.857 -0.511 1.295 3.169
Initial pasture -0.201 0.171 0.605 -1.617 -1.089 -0.551

Initial income -2.992 -2.880 -2.757 1.760 2.000 2.238
Human capital 2.143 2.745 3.300 -2.572 -1.726 -0.931
Population growth -0.474 -0.452 -0.427 -0.086 -0.029 0.024
Population density -0.485 -0.381 -0.279 0.181 0.369 0.555
GVA agriculture -0.113 -0.058 -0.010 -0.146 -0.056 0.042
GVA industry -0.419 -0.360 -0.305 -0.775 -0.630 -0.495
GVA services 0.475 0.545 0.614 0.251 0.413 0.568

Precipitation 0.091 0.430 0.792 -0.517 -0.145 0.205
Elevation -0.001 -0.001 -0.000 -0.000 0.001 0.001

ρ 0.313 0.320 0.323
Observations 57,882

Table B2: Average direct and indirect impact estimates on economic growth with yearly mining effects.
Panel-structure (2005-2020) spatial Durbin model including time fixed effects. Dependent variable is 5-year average
annual GDP per capita growth rate. Estimates printed in bold type are statistically different from zero based on
the 95 percent posterior credible interval. PM denotes posterior mean. Time-specific intercepts were excluded for
more concise summary tables.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Industrial mining × pre 2010 1.483 1.710 1.929 0.995 1.469 1.963
Industrial mining × since 2010 -0.259 -0.068 0.136 -1.072 -0.614 -0.135

Garimpo mining × pre 2010 0.049 0.303 0.588 -0.268 0.398 1.043
Garimpo mining × since 2010 -0.198 0.061 0.314 -0.151 0.427 0.984

LUCAgriculture,ForestPlantation 0.005 0.064 0.124 -0.023 0.114 0.278

LUCAgriculture,Grassland -0.147 -0.078 -0.005 -0.015 0.178 0.363

LUCAgriculture,Pasture -0.038 -0.008 0.022 0.174 0.239 0.307

LUCNaturalForest,Agriculture 0.002 0.067 0.133 0.109 0.275 0.434

LUCNaturalForest,ForestPlantation -0.006 0.034 0.072 -0.080 -0.001 0.080

LUCNaturalForest,Grassland -0.129 -0.073 -0.023 -0.182 -0.049 0.082

LUCNaturalForest,Pasture -0.033 0.000 0.035 -0.077 -0.030 0.024

LUCForestPlantation,Agriculture 0.028 0.106 0.189 -0.184 -0.005 0.205

LUCForestPlantation,Grassland 0.009 0.105 0.196 -0.558 -0.286 -0.032

LUCForestPlantation,Pasture -0.029 0.018 0.066 -0.243 -0.115 -0.008

LUCGrassland,Agriculture 0.021 0.081 0.144 -0.133 0.021 0.176

LUCGrassland,ForestPlantation -0.096 -0.024 0.044 -0.296 -0.145 0.000

LUCGrassland,Pasture -0.054 -0.013 0.030 0.075 0.163 0.266

LUCPasture,Agriculture 0.015 0.042 0.069 -0.070 -0.009 0.047

LUCPasture,ForestPlantation 0.002 0.036 0.069 -0.162 -0.102 -0.040

LUCPasture,Grassland 0.069 0.111 0.154 -0.111 -0.014 0.079

Initial agriculture 2.356 2.944 3.528 -1.902 -1.145 -0.388
Initial natural forest -0.700 -0.210 0.259 -0.062 0.602 1.294
Initial forest plantation -0.584 1.034 2.654 -7.869 -5.065 -2.150
Initial grassland -1.077 -0.081 0.909 -0.539 1.253 2.882
Initial pasture -0.213 0.173 0.576 -1.551 -1.053 -0.506

Initial income -2.992 -2.894 -2.785 1.824 2.044 2.260
Human capital 2.196 2.757 3.296 -2.686 -1.764 -0.915
Population growth -0.472 -0.450 -0.428 -0.060 -0.005 0.053
Population density -0.484 -0.380 -0.278 0.188 0.373 0.540

GVA agriculture -0.112 -0.060 -0.007 -0.139 -0.045 0.032
GVA industry -0.410 -0.356 -0.302 -0.718 -0.591 -0.477
GVA services 0.476 0.542 0.607 0.232 0.371 0.510

Precipitation 0.040 0.435 0.795 -0.561 -0.172 0.238
Elevation -0.001 -0.001 -0.000 -0.000 0.001 0.001

ρ 0.313 0.321 0.333
Observations 57,882

Table B3: Average direct and indirect impact estimates on economic growth with pooled mining
effects. Panel-structure (2005-2020) spatial Durbin model including time fixed effects. Dependent variable
is 5-year average annual GDP per capita growth rate. Estimates printed in bold type are statistically different
from zero based on the 95 percent posterior credible interval. PM denotes posterior mean. Time-specific
intercepts were excluded for more concise summary tables.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Industrial mining 2005 -0.046 -0.020 0.007 -0.258 -0.140 -0.020
Industrial mining 2006 -0.066 -0.040 -0.012 -0.298 -0.170 -0.040
Industrial mining 2007 -0.045 -0.017 0.009 -0.235 -0.103 0.012
Industrial mining 2008 -0.037 -0.011 0.016 -0.339 -0.211 -0.093
Industrial mining 2009 -0.037 -0.010 0.020 -0.240 -0.113 0.010
Industrial mining 2010 -0.007 0.022 0.050 -0.122 0.006 0.114
Industrial mining 2011 -0.022 0.005 0.032 -0.112 0.016 0.136
Industrial mining 2012 -0.034 -0.008 0.021 -0.154 -0.036 0.101
Industrial mining 2013 -0.040 -0.013 0.016 -0.217 -0.094 0.029
Industrial mining 2014 -0.037 -0.008 0.021 -0.173 -0.056 0.072
Industrial mining 2015 -0.017 0.011 0.037 -0.242 -0.116 0.004

Garimpo mining 2005 0.025 0.056 0.093 0.316 0.474 0.631
Garimpo mining 2006 0.011 0.045 0.080 0.306 0.461 0.632
Garimpo mining 2007 -0.010 0.030 0.066 0.276 0.451 0.605
Garimpo mining 2008 -0.028 0.014 0.053 0.145 0.306 0.467
Garimpo mining 2009 -0.017 0.020 0.052 -0.125 0.023 0.186
Garimpo mining 2010 -0.064 -0.028 0.006 -0.257 -0.094 0.061
Garimpo mining 2011 -0.054 -0.017 0.019 -0.333 -0.173 -0.016
Garimpo mining 2012 -0.048 -0.012 0.024 -0.297 -0.133 0.035
Garimpo mining 2013 -0.056 -0.022 0.011 -0.011 0.142 0.289
Garimpo mining 2014 -0.044 -0.011 0.021 0.044 0.199 0.367
Garimpo mining 2015 -0.055 -0.022 0.014 0.142 0.306 0.462

LUCAgriculture,Grassland -0.020 -0.016 -0.011 -0.092 -0.071 -0.048

LUCAgriculture,Pasture -0.003 -0.002 0.000 -0.021 -0.013 -0.006

LUCGrassland,Agriculture -0.001 0.003 0.007 0.012 0.030 0.047

LUCGrassland,Pasture -0.006 -0.004 -0.002 -0.024 -0.013 -0.002

LUCPasture,Agriculture 0.002 0.003 0.005 0.014 0.021 0.027

LUCPasture,Grassland -0.006 -0.004 -0.002 -0.006 0.004 0.015

Initial agriculture 0.022 0.052 0.081 -0.248 -0.198 -0.139
Initial natural forest 0.298 0.324 0.349 -0.129 -0.077 -0.025
Initial forest plantation 0.178 0.260 0.332 -0.475 -0.220 0.025
Initial grassland 0.031 0.087 0.139 -0.061 0.077 0.238
Initial pasture 0.112 0.134 0.159 -0.187 -0.149 -0.109

GPD growth -0.000 -0.000 0.000 -0.000 0.002 0.004

Precipitation -0.029 -0.011 0.006 0.007 0.026 0.047
Elevation -0.000 0.000 0.000 -0.000 -0.000 -0.000

ρ 0.682 0.683 0.692
Observations 57,882

Table B4: Average direct and indirect impact estimates on forest loss (relative) with yearly
mining effects. Panel-structure (2005-2020) spatial Durbin model including time fixed effects. Dependent
variable is annual forest loss in ha per km2. Estimates printed in bold type are statistically different from
zero based on the 95 percent posterior credible interval. PM denotes posterior mean. Time-specific intercepts
were excluded for more concise summary tables.



120 APPENDICES

Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Industrial mining × pre 2010 -0.032 -0.019 -0.004 -0.192 -0.138 -0.084
Industrial mining × since 2010 -0.010 0.002 0.013 -0.097 -0.046 0.001

Garimpo mining × pre 2010 0.016 0.030 0.046 0.251 0.322 0.390
Garimpo mining × since 2010 -0.032 -0.019 -0.004 -0.019 0.042 0.102

LUCAgriculture,Grassland -0.020 -0.015 -0.010 -0.085 -0.064 -0.042

LUCAgriculture,Pasture -0.003 -0.001 0.000 -0.018 -0.011 -0.004

LUCGrassland,Agriculture -0.001 0.003 0.006 0.008 0.027 0.045

LUCGrassland,Pasture -0.006 -0.004 -0.001 -0.022 -0.012 -0.003

LUCPasture,Agriculture 0.002 0.003 0.005 0.013 0.019 0.025

LUCPasture,Grassland -0.006 -0.004 -0.002 -0.004 0.005 0.014

Initial agriculture 0.024 0.054 0.082 -0.242 -0.191 -0.136
Initial natural forest 0.301 0.325 0.350 -0.145 -0.094 -0.048
Initial forest plantation 0.185 0.260 0.339 -0.421 -0.218 0.014
Initial grassland 0.041 0.089 0.136 -0.089 0.068 0.204
Initial pasture 0.112 0.134 0.158 -0.190 -0.150 -0.110

GPD growth -0.000 -0.000 0.000 -0.001 0.001 0.004

Precipitation -0.030 -0.011 0.009 0.004 0.025 0.046
Elevation -0.000 0.000 0.000 -0.000 -0.000 -0.000

ρ 0.682 0.684 0.692
Observations 57,882

Table B5: Average direct and indirect impact estimates on forest loss (relative) with pooled
mining effects. Panel-structure (2005-2020) spatial Durbin model including time fixed effects. Dependent
variable is annual forest loss in ha per km2. Estimates printed in bold type are statistically different from
zero based on the 95 percent posterior credible interval. PM denotes posterior mean. Time-specific intercepts
were excluded for more concise summary tables.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Industrial mining 2005 -91.944 45.129 189.290 -1954.223 -1363.383 -813.796
Industrial mining 2006 -202.148 -71.758 69.726 -1961.346 -1418.089 -862.576
Industrial mining 2007 -154.620 -19.495 111.552 -1696.175 -1153.626 -601.917
Industrial mining 2008 -155.163 -12.036 127.141 -1485.776 -1005.008 -451.998
Industrial mining 2009 -144.017 12.859 140.786 -1208.347 -684.992 -161.499
Industrial mining 2010 -137.420 15.238 154.110 -861.309 -317.252 217.734
Industrial mining 2011 -176.807 -28.325 120.963 -772.050 -235.558 302.126
Industrial mining 2012 -157.501 -6.616 157.102 -755.966 -240.873 270.009
Industrial mining 2013 -175.737 -40.159 95.518 -905.569 -420.590 90.622
Industrial mining 2014 -159.909 -18.319 123.247 -700.557 -161.604 405.318
Industrial mining 2015 -123.732 9.447 153.102 -869.033 -277.748 302.010

Garimpo mining 2005 1227.782 1414.852 1600.504 5850.678 6533.633 7209.794
Garimpo mining 2006 1141.991 1321.678 1506.368 4702.490 5401.747 6039.590
Garimpo mining 2007 820.756 1008.252 1190.399 3461.671 4170.754 4834.288
Garimpo mining 2008 506.281 671.025 855.624 2917.193 3597.413 4276.368
Garimpo mining 2009 213.332 396.417 564.436 1206.289 1955.346 2709.012
Garimpo mining 2010 -17.637 157.322 334.031 311.625 999.067 1689.094
Garimpo mining 2011 129.737 303.535 486.863 106.890 736.572 1390.477
Garimpo mining 2012 12.791 200.332 389.792 -143.582 595.887 1342.507
Garimpo mining 2013 129.471 300.765 470.097 455.390 1195.890 1861.831
Garimpo mining 2014 59.590 237.209 402.335 486.674 1181.654 1901.449
Garimpo mining 2015 201.229 410.488 604.331 945.200 1656.988 2391.562

LUCAgriculture,Grassland 9.153 33.842 58.775 -103.593 -9.258 83.516

LUCAgriculture,Pasture 28.935 37.218 46.490 -5.579 29.307 59.170

LUCGrassland,Agriculture 7.572 25.015 41.484 -16.339 52.440 127.013

LUCGrassland,Pasture 44.473 56.614 68.660 54.285 102.261 148.788

LUCPasture,Agriculture 37.736 44.652 52.414 10.670 39.175 67.348

LUCPasture,Grassland 21.233 33.281 45.826 -26.402 19.101 64.960

Initial agriculture -163.642 -12.195 145.012 335.194 557.485 785.222
Initial natural forest 1441.874 1577.793 1706.876 231.428 499.560 728.522
Initial forest plantation -453.614 -18.952 408.902 -3085.650 -2034.482 -992.611
Initial grassland -396.308 -143.635 102.473 -1819.123 -1075.841 -325.443
Initial pasture -430.151 -316.819 -206.106 674.124 852.157 1050.888

GPD growth -6.972 -4.466 -2.220 -12.176 -2.535 7.114

Precipitation -64.158 37.438 135.231 -158.783 -56.487 51.512
Elevation -0.569 -0.441 -0.297 -0.041 0.134 0.302

ρ 0.612 0.619 0.622
Observations 57,882

Table B6: Average direct and indirect impact estimates on forest loss (absolute) with yearly
mining effects. Panel-structure (2005-2020) spatial Durbin model including time fixed effects. Dependent
variable is annual forest loss in absolute ha. Estimates printed in bold type are statistically different from
zero based on the 95 percent posterior credible interval. PM denotes posterior mean. Time-specific intercepts
were excluded for more concise summary tables.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Industrial mining × pre 2010 -71.788 -9.985 55.858 -1360.717 -1125.525 -894.899
Industrial mining × since 2010 -72.068 -11.446 44.099 -478.004 -264.168 -28.745

Garimpo mining × pre 2010 881.149 962.731 1040.071 3998.943 4320.267 4606.542
Garimpo mining × since 2010 194.227 270.467 345.013 795.179 1076.780 1368.642

LUCAgriculture,Grassland 11.739 34.454 54.629 -95.878 -2.113 93.660

LUCAgriculture,Pasture 28.873 38.151 46.658 1.151 35.021 69.055

LUCGrassland,Agriculture 8.035 24.533 39.667 -29.851 43.966 123.638

LUCGrassland,Pasture 43.251 56.432 69.081 61.050 106.488 151.651

LUCPasture,Agriculture 36.213 43.790 51.247 5.258 34.152 63.230

LUCPasture,Grassland 20.270 32.761 45.117 -29.907 14.417 57.654

Initial agriculture -170.907 -11.291 143.358 301.200 543.993 797.984
Initial natural forest 1439.536 1570.441 1700.503 257.323 484.305 745.181
Initial forest plantation -480.375 -21.418 375.416 -3027.473 -2006.050 -775.361
Initial grassland -390.913 -132.273 135.340 -1843.508 -1065.684 -349.820
Initial pasture -437.845 -317.685 -194.894 659.665 844.444 1038.289

GPD growth -6.755 -4.504 -2.183 -12.369 -2.764 6.715

Precipitation -54.937 46.105 144.649 -171.035 -63.031 47.172
Elevation -0.590 -0.439 -0.305 -0.050 0.134 0.308

ρ 0.612 0.623 0.632
Observations 57,882

Table B7: Average direct and indirect impact estimates on forest loss (absolute) with pooled
mining effects. Panel-structure (2005-2020) spatial Durbin model including time fixed effects. Dependent
variable is annual forest loss in absolute ha. Estimates printed in bold type are statistically different from
zero based on the 95 percent posterior credible interval. PM denotes posterior mean. Time-specific intercepts
were excluded for more concise summary tables.
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C Supplementary Information Paper 3

C.1 Supplementary figures

Figure C1: Schematic workflow. Linking local forest loss (Maus et al. 2022; Hansen et al. 2013) and the
global MRIO model GLORIA (Lenzen et al. 2017; Lenzen et al. 2022) to assess forest loss embodied in final
consumption.

Figure C2: Accumulated 2001-2019 forest loss caused by mining at 2 degrees resolution using a Robinson
map projection. Filtered for tiles with forest loss larger than 100 km2. Areas were obtained by intersecting
mining area polygons (Maus et al. 2022) and forest cover maps from the Global Forest Change (GFC) dataset
(Hansen et al. 2013).



124 APPENDICES

Figure C3: Yearly forest loss (in km2) within mining polygons by commodity, 2001-2019.

Figure C4: Accumulated 2001-2019 forest loss within mining polygons by commodity and country.
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Figure C5: Yearly forest loss in hectares, by region and commodity, 2001-2019.
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Figure C6: Yearly forest loss in m2 per extracted tonne of material, by region and commodity, 2001-2019.
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Figure C7: Total output per extraction sector calculated from the GLORIA IO tables (Lenzen et al. 2017;
Lenzen et al. 2022). 2001-2019, billion USD.
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Figure C8: Direct intensities in m2 of forest loss per 1,000 USD output of each extraction sector and year.
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Figure C9: Production (left) and consumption (right) perspective of accumulated 2001-2019 forest loss
caused by mining.
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Figure C10: Forest loss caused by mining embodied in the consumption of Chinese industry sectors by world
region where forest loss occurs.

Figure C11: Forest loss caused by mining embodied in the consumption of US industry sectors by world
region where forest loss occurs.
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Figure C12: Forest loss caused by mining embodied in consumption, by industry sector and consumer region.
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Figure C13: Allocation of forest loss withing mine sites to respective commodities.

Figure C14: Yearly forest loss (in km2) within mining polygons, by commodity and allocation type, 2001,
2005, 2010, 2015 and 2019.
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Figure C15: Production perspective by allocation type. Production perspective of accumulated 2001-
2019 forest loss within mine sites by allocation type.

Figure C16: Consumption perspective by allocation type. Consumption perspective of accumulated
2001-2019 forest loss within mine sites by allocation type.
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Figure C17: Forest loss within mine sites (in km2) by extracted commodity, price allocation, 2001-2019.
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C.2 Supplementary tables

Country Prod. Prod. Cons. Cons.

(km2) (m2/cap) (km2) (m2/cap)

CHN 219.04 0.16 2,057.57 1.46
EU27 200.43 0.45 1,416.34 3.17
USA 831.39 2.53 1,331.74 4.06
JPN 0.43 0.00 752.51 5.94
IND 20.68 0.01 749.84 0.54
IDN 2,751.34 10.21 633.42 2.35
CAN 1,063.20 28.28 516.82 13.74
GBR 7.63 0.11 486.99 7.29
RUS 1,029.13 7.13 405.80 2.81
BRA 1,483.14 7.00 368.91 1.74
KOR 2.84 0.05 352.71 6.81
CHE 0.05 0.01 342.22 39.91
DEU 72.48 0.87 333.26 4.01
MMR 466.52 8.80 232.24 4.38
ESP 12.92 0.27 202.60 4.30
ITA 0.44 0.01 195.04 3.27
THA 5.95 0.08 163.09 2.29
GHA 534.80 16.97 157.59 5.00
FRA 13.98 0.21 153.46 2.28
SGP 0.00 0.00 147.54 25.87
AUS 657.57 25.95 147.28 5.81
TUR 23.57 0.28 116.62 1.40
MEX 25.77 0.21 109.77 0.88
MYS 35.00 1.07 108.98 3.32
XEU 0.01 108.79
HKG 0.00 0.00 106.60 14.20
SAU 0.00 0.00 96.28 2.69
PHL 43.58 0.39 92.56 0.84
NLD 0.07 0.00 90.63 5.22
ZAF 38.63 0.66 87.09 1.50
VNM 16.73 0.17 60.05 0.63
ARE 0.00 0.00 59.71 6.48
BEL 0.03 0.00 55.51 4.83
SWE 19.94 1.94 48.06 4.68
POL 14.11 0.37 45.96 1.21
KAZ 0.40 0.02 44.58 2.41
FIN 37.33 6.76 35.32 6.40
AUT 0.59 0.07 31.97 3.60
IRL 0.22 0.04 30.12 6.10
PER 632.37 19.27 29.39 0.90
ROU 11.73 0.61 29.01 1.50
IRN 0.20 0.00 28.67 0.33
SRB 3.93 0.57 28.30 4.08
COL 79.41 1.58 26.77 0.53
XAM 843.36 25.46
BGR 6.61 0.95 24.98 3.58
CZE 1.33 0.12 22.98 2.15
PAK 0.00 0.00 22.77 0.10
VEN 182.01 6.28 22.69 0.78
KWT 0.00 0.00 21.34 4.80
GRC 4.71 0.44 20.04 1.87
PRT 1.27 0.12 18.40 1.79
NZL 13.43 2.70 18.08 3.63
ISR 0.00 0.00 17.39 1.92
NOR 1.06 0.20 16.99 3.18
UKR 2.88 0.06 16.42 0.37
HUN 1.18 0.12 16.16 1.65
DNK 0.00 0.00 15.80 2.72
CHL 2.31 0.12 15.62 0.82
BGD 0.00 0.00 15.12 0.09
NGA 4.37 0.02 14.58 0.07
TZA 12.43 0.21 13.93 0.23
ARG 0.04 0.00 13.65 0.30
BLR 0.03 0.00 13.46 1.43
SVK 1.24 0.23 13.19 2.42
EGY 0.00 0.00 11.51 0.11
KHM 1.65 0.10 10.50 0.65
MAR 0.00 0.00 10.11 0.28
SDN 0.00 0.00 10.03 0.23
QAT 0.00 0.00 9.61 3.42
HRV 0.00 0.00 9.40 2.31
OMN 0.00 0.00 8.72 1.90
LKA 0.32 0.01 8.65 0.40
COD 151.59 1.69 8.63 0.10
IRQ 0.00 0.00 8.13 0.20
XAS 13.56 7.93
DZA 0.15 0.00 7.88 0.18
LBY 0.00 0.00 7.04 1.07
SVN 0.16 0.08 6.76 3.24
BHR 0.00 0.00 5.99 4.01
ZMB 114.39 6.22 5.83 0.32
AGO 66.86 2.07 5.43 0.17
UGA 0.23 0.01 5.24 0.12

.
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.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

NPL 0.00 0.00 5.02 0.17
LUX 0.03 0.05 4.66 7.52
LBN 0.00 0.00 4.48 0.77
XAF 0.09 4.30
MOZ 14.75 0.49 4.22 0.14
JOR 0.00 0.00 3.90 0.36
SYR 0.00 0.00 3.72 0.19
TUN 0.00 0.00 3.53 0.29
KEN 2.12 0.04 3.50 0.07
AZE 0.70 0.07 3.44 0.34
DOM 9.63 0.89 3.39 0.31
CYP 0.06 0.05 3.38 2.75
MKD 0.87 0.42 3.28 1.58
LTU 0.00 0.00 3.23 1.16
ZWE 6.14 0.40 3.17 0.21
PAN 8.44 1.99 3.10 0.73
GIN 31.40 2.44 3.07 0.24
COG 2.74 0.49 2.96 0.53
UZB 0.02 0.00 2.95 0.09
PNG 11.37 1.19 2.79 0.29
YEM 0.00 0.00 2.75 0.09
GTM 1.28 0.08 2.73 0.16
CUB 9.93 0.88 2.57 0.23
TKM 0.00 0.00 2.51 0.41
BOL 16.32 1.39 2.49 0.21
ECU 15.33 0.88 2.47 0.14
LAO 32.43 4.50 2.33 0.32
GEO 1.01 0.27 2.29 0.61
ETH 0.57 0.01 2.28 0.02
EST 0.00 0.00 2.28 1.72
CIV 37.25 1.42 2.23 0.09
CRI 0.15 0.03 2.22 0.44
URY 1.08 0.31 2.18 0.63
MLT 0.00 0.00 2.13 4.22
LVA 0.00 0.00 2.04 1.07
BIH 1.19 0.35 1.97 0.59
SEN 1.53 0.10 1.70 0.11
ISL 0.00 0.00 1.66 4.61
SLV 0.04 0.01 1.65 0.26
PRY 0.58 0.09 1.38 0.21
GAB 2.18 0.97 1.27 0.57
HND 1.07 0.11 1.24 0.12
BRN 0.00 0.00 1.23 2.81
CMR 1.73 0.07 1.18 0.05
AFG 0.00 0.00 1.17 0.03
NAM 0.89 0.36 1.11 0.45
LBR 7.12 1.43 1.10 0.22
GNQ 0.00 0.00 1.04 0.67
ARM 1.79 0.63 1.01 0.36
MWI 1.17 0.06 1.00 0.05
MNG 7.54 2.33 0.99 0.31
MLI 16.62 0.81 0.97 0.05
SLE 19.57 2.43 0.87 0.11
TJK 0.00 0.00 0.82 0.09
PSE 0.00 0.00 0.82 0.17
MDG 9.51 0.35 0.81 0.03
NIC 2.14 0.32 0.81 0.12
BWA 1.06 0.42 0.77 0.31
TCD 0.00 0.00 0.70 0.04
PRK 0.07 0.00 0.69 0.03
RWA 0.21 0.02 0.65 0.05
TGO 0.58 0.07 0.63 0.08
ALB 0.39 0.14 0.60 0.21
BFA 0.62 0.03 0.58 0.03
BEN 0.01 0.00 0.57 0.05
MDA 0.00 0.00 0.53 0.20
SDS 0.00 0.52
JAM 5.33 1.90 0.51 0.18
HTI 0.02 0.00 0.45 0.04
DJI 0.00 0.00 0.42 0.39
BHS 0.00 0.00 0.42 1.04
MRT 0.00 0.00 0.42 0.10
BTN 0.00 0.00 0.32 0.41
KGZ 0.08 0.01 0.27 0.04
NER 0.00 0.00 0.27 0.01
BDI 0.00 0.00 0.16 0.01
ERI 0.00 0.00 0.14 0.04
CAF 0.00 0.00 0.10 0.02
BLZ 0.00 0.00 0.08 0.21
GMB 0.00 0.00 0.05 0.02
SOM 0.00 0.00 0.00 0.00
DYE 0.00 0.00

Table C1: Accumulated 2001-2019 forest loss caused by mining. Production perspective in km2 and m2 per
capita, and consumption perspective in km2 and m2 per capita. Country indicates single countries, except
for EU27 (EU countries aggregated) and “rest of” Europe (XEU), Americas (XAM), Asia (XAS), and Africa
(XAF) accounts. Per capita values were calculated using 2019 statistics from the gt (Iannone et al. 2024) R
package.
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